Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Lattice Boltzmann Modeling of Diesel Spray Formation and Break-Up

2010-04-12
2010-01-1130
Spray formation and break-up are crucial phenomena for mixture formation inside diesel engines, both for combustion control and pollutant formation. Since the emission restrictions have become more and more severe in the last years, many studies have been conducted in order to improve diesel injection. Numerical simulations have proven to be reliable in producing results in a faster and cheaper way than experimental measures. The recent great progresses in computer science, then, have allowed to reach great accuracy in the simulations. In this work, a novel methodology based on Boltzmanns Kinetic Theory is applied to diesel injection. Lattice Boltzmann BGK (LBGK) provides and alternative method for solving fluid-dynamic problems and allows even superior accuracy as compared to conventional CFD. The multiphase approach used in this paper to study spray formation and primary is based on the works by Shan and Chen and their successive modifications.
Technical Paper

Retrofit of a Heavy-Duty Diesel Truck: Comparison of Parallel and Series Hybrid Architectures with Waste Heat Recovery

2020-09-27
2020-24-0015
This paper describes and compares different powertrain configurations for the retrofit of a heavy-duty Class 8 truck, powered by a 12.6 liters diesel engine. The engine is firstly equipped with an electrification-oriented organic Rankine cycle (ORC) system and then coupled to a traction electric machine into a hybrid powertrain. An electrification-oriented ORC system can produce enough energy to cover the ancillary loads, which in long-haul applications for freight transportation are quite demanding. Nevertheless, only powertrain hybridization can achieve significant improvements in the overall system efficiency. Both systems may thus be implemented in the same vehicle, but an efficiency improvement is guaranteed only if the system is carefully managed so as to reach a trade-off between the requirements and potential benefits of the ORC system and those of the hybrid powertrain.
Technical Paper

Atomization of High-Pressure Diesel Spray: Experimental Validation of a New Breakup Model

2001-03-05
2001-01-1070
A hybrid model for the atomization of Diesel sprays was developed [1]. The model was added to the KIVA code to better simulate spray evolution. Different implementation for low-medium and high injection pressure sprays are performed. It has already been validated for the low-pressure case [1,2] and in this work it was tested for high injection pressure systems, in a vessel at ambient conditions. It distinguishes between jet primary breakup and droplet secondary breakup. For the latter distinct models are used, as the droplet Weber number changes in the various regimes, in order to take into account the effects of the different relevant forces. For high pressure Diesel spray the effects of jet turbulence, cavitation and nozzle flow on liquid core primary breakup must be considered. Due to the high droplet velocity the catastrophic secondary breakup regime may occur.
Technical Paper

Combustion and Spray Simulation of a DI Turbocharged Diesel Engine

2002-10-21
2002-01-2776
The recent innovations on automotive Diesel engines require significant research efforts. The new generation of fully electronically controlled injection systems have opened new ways to reduce emissions and improve the efficiency of the engine. The free mapping of injection law together with the enhanced injection pressures favor, in fact, the optimization of mixture formation. In this field, the 3D simulation is playing a substantial role to support the design of combustion chamber. This paper presents a computational model to simulate the multi-injection process, the mixture formation and the combustion of DI diesel engines with high-pressure injection systems. The main code is a modified version of the KIVA 3V and the modifications presented in this work are a high pressure break up model and a multi component evaporation model. The code has been validated through experimental data on a 4-cylinder, 1910 cc, DI turbocharged Diesel engine (Fiat 1.9 JTD).
Technical Paper

Study of the Impact on the Combustion Process of Injector Nozzle Layout creating Enhanced Secondary Spray Break-up

2003-03-03
2003-01-0706
The paper presents a study of a key-element in the mixture preparation process. A typical common-rail (CR) high-pressure fuel injector was fitted with a prototype injector nozzle with atomizer bores of a particular conical layout. It is demonstrated within certain layout limits, that a considerable enhancement can be obtained for the secondary break-up of the hard-core fluid sprays produced by the nozzle. The impact on the combustion process is examined in terms of pressure and heat release as well as of the engine-out pollutant emission. The results are compared to those of an earlier developed CR high-pressure injector nozzle. The atomization behavior of the prototype nozzle is illustrated through experimental results in terms of engine-out emissions from a 1.3-liter turbo-charged passenger car diesel engine. The detailed spray behavior is visualized on a component test rig by use of specially developed optical visualization techniques.
X