Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Short Term Prediction of a Vehicle's Velocity Trajectory Using ITS

2015-04-14
2015-01-0295
Modern cars feature a variety of different driving assistance systems, which aim to improve driving comfort and safety as well as fuel consumption. Due to the technical advances and the possibility to consider vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, cooperative adaptive cruise control (CACC) strategies have received significant attention from both research and industrial communities. The performance of such systems can be enhanced if the future velocity of the surrounding traffic can be predicted. Generally, human driving behavior is a complex process and influenced by several environmental impacts. In this work a stochastic model of the velocity of a preceding vehicle based on the incorporation of available information sources such as V2I, V2V and radar information is presented. The main influences on the velocity prediction considered in this approach are current and previous velocity measurements and traffic light signals.
Journal Article

A Framework for Virtual Testing of ADAS

2016-04-05
2016-01-0049
Virtual testing of advanced driver assistance systems (ADAS) using a simulation environment provides great potential in reducing real world testing and therefore currently much effort is spent on the development of such tools. This work proposes a simulation and hardware-in-the-loop (HIL) framework, which helps to create a virtual test environment for ADAS based on real world test drive. The idea is to reproduce environmental conditions obtained on a test drive within a simulation environment. For this purpose, a production standard BMW 320d is equipped with a radar sensor to capture surrounding traffic objects and used as vehicle for test drives. Post processing of recorded GPS raw data from the navigation system using an open source map service and the radar data allows an exact reproduction of the driven road including other traffic participants.
Technical Paper

Adaptive Inverse Torque Control of a Diesel Engine Using Adaptive Mapping Update

2003-03-03
2003-01-0397
Torque control is a basic element of engine control systems, in particular since it has become a standard interface for different functionalities. Torque control is also a critical requirement emission test cycle simulation on test benches. This torque control is usually reached by extensive, physical based modeling of the vehicle. This paper presents an approach to avoid this effort and to obtain a dramatic reduction of the parametrization work, by first determining an approximated model and then updating it online during operation. This model is than used for a stable inverse control. To handle model uncertainties and perturbation a correction feedback, with robustifying effect, is added to the control structure. This approach is detailed using data and measurements on a BMW M47D production diesel engine on a dynamic test bench.
X