Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation of Wankel Engine Performance Using Commercial Software for Piston Engines

2012-10-23
2012-32-0098
At present the market of Wankel engines is limited to some special applications. This fact explains absence of commercial software products specially developed for this engine simulation and prediction of its performance. Conversely, there are available and widely used software products for simulation of reciprocating-piston engines performance. Some attempts are known in using this software for prediction of Wankel engine performance. This paper details an approach used in these attempts. Main differences between both types of engines are summarized and principles of a virtual reciprocating-piston engine compilation are developed. A method of virtual blowing was developed for assessment of discharge coefficients for intake and exhaust ports. Comparison of simulation results with the measured performance of two UAV Wankel engines showed sufficient accuracy of the suggested approach.
Technical Paper

Underexpanded Impinging Gaseous Jet Interaction with a Lubricated Cylinder Surface

2023-04-11
2023-01-0308
The dynamics of the gaseous jet is a major factor affecting the particulate matter and gaseous pollutants formation in the combustion of hydrogen or a hydrogen-rich reformate. Mitigation of particulate matter formation is essential for the sustainability of a novel high-efficiency propulsion cycle with High-Pressure Thermochemical Recuperation which has been developing in the Technion. The latter suffers from elevated particle emissions compared to hydrocarbon fuels combustion in a wide range of operating regimes. An intensified lubricant involvement in the combustion process was found to be the source of the elevated particle formation in a non-premixed reformate and hydrogen combustion. The reported research further analyzes and compares using analytical, empirical, and experimental tools the gaseous impinging underexpanded jet evolution and propagation with a focus on the lubricant vapor entrainment mechanisms from a heated cylinder wall surface into the combustion chamber bulk.
X