Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Model Based Control of SCR Dosing and OBD Strategies with Feedback from NH3 Sensors

2009-04-20
2009-01-0911
This paper presents a model-based control system for SCR urea dosing employing an embedded real-time SCR chemistry model and a NH3 sensor. The control algorithm consists of a number of control features designed to enhance ammonia storage control and closed-loop compensation using the mid-brick NH3 sensor. An adaptive control algorithm is developed to demonstrate robustness of the feedback control system to compensate for catalyst aging, urea injection malfunction, or dosing fluid concentration variation. Simulation and engine dynamometer testing following ESC and FTP emission cycles are used to demonstrate the advantages of this control approach for meeting both NOx emission requirements and NH3 slip targets. Furthermore this paper demonstrates potential of a NH3 sensor for on-board diagnostics. Additionally the feasibility of implementing model based algorithms in a 32-bit floating-point environment with an automotive controller is examined.
Technical Paper

Monitoring, Feedback and Control of Urea SCR Dosing Systems for NOx Reduction: Utilizing an Embedded Model and Ammonia Sensing

2008-04-14
2008-01-1325
This paper presents a monitoring, feedback and control system for SCR urea dosing utilizing an embedded model and NH3 sensing after the SCR for loop closing control. A one-dimensional SCR model was developed and embedded in a Simulink/Matlab environment. This embedded model is utilized for on-line, real time control of 32.5% aqueous urea dosing in the exhaust stream. Engine testing and simulation are used with the embedded SCR model and NH3 sensor closed loop feedback to demonstrate the advantages of this control approach for meeting both NOx emission requirements and NH3 slip targets. The paper explores these advantages under heavy duty FTP cycle conditions. The potential benefits include SCR size optimization and fuel consumption rate reduction under certain operating conditions.
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

Effects of B20 Fuel and Catalyst Entrance Section Length on the Performance of UREA SCR in a Light-Duty Diesel Engine

2010-04-12
2010-01-1173
The current study focused on the effects B20 fuel (20% soybean-based biodiesel) and SCR entrance shapes on a light-duty, high-speed, 2.8L common-rail 4-cylinder diesel engine, at different exhaust temperatures. The results indicate that B20 has less deNOX efficiency at low temperature than ULSD, and that N₂O emission need to be characterized as well as NH₃ slip. If a mixer and enough mixing length are used, longer divergence section does not improve the deNOX efficiency significantly under the speed ranges tested.
X