Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effect of Biodiesel (B-20) on Performance and Emissions in a Single Cylinder HSDI Diesel Engine

2008-04-14
2008-01-1401
The focus of this study is to determine the effect of using B-20 (a blend of 20% soybean methyl ester biodiesel and 80% ultra low sulfur diesel fuel) on the combustion process, performance and exhaust emissions in a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated under simulated turbocharged conditions with 3-bar indicated mean effective pressure and 1500 rpm engine speed. The experiments covered a wide range of injection pressures and EGR rates. The rate of heat release trace has been analyzed in details to determine the effect of the properties of biodiesel on auto ignition and combustion processes and their impact on engine out emissions. The results and the conclusions are supported by a statistical analysis of data that provides a quantitative significance of the effects of the two fuels on engine out emissions.
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

Computational Modeling of Diesel NOx Trap Desulfation

2005-10-24
2005-01-3879
The major challenge in diesel NOx aftertreatment systems using NOx adsorbers is their susceptibility to sulfur poisoning. A new computational model has been developed for the thermal management of NOx adsorber desulfation and describes the exothermic reaction mechanisms on the catalyst surface in the diesel NOx trap. Sulfur, which is present in diesel fuel, adsorbs as sulfates and accumulates at the same adsorption sites as NOx, therefore inhibiting the ability of the catalyst to adsorb NOx. Typically, a high surface temperature above 650 °C is required to release sulfur rapidly from the catalyst [1]. Since the peak temperatures of light-duty diesel engine exhaust are usually below 400 °C, additional heat is required to remove the sulfur. This report describes a new mathematical model that employs Navier-Stokes equations coupled with species transportation equations and exothermic chemical reactions.
Technical Paper

Experimental Evaluation of Reformate-Assisted Diesel NOx Trap Desulfation

2005-10-24
2005-01-3878
NOx adsorber catalysts are leading candidates for improving NOx aftertreatment in diesel exhaust. The major challenge in the use of adsorbers that capture NOx in the form of nitrates is their susceptibility to sulfur poisoning. Sulfur, which is present in diesel fuel, adsorbs and accumulates as sulfate (SO4-2) at the same adsorption sites as NOx, and, since it is more stable than nitrates, inhibits the ability of the catalyst to adsorb NOx. It is found that high temperature (> about 650 °C) in the presence of a reducing gas is required to release sulfur rapidly from the catalyst. Since the peak temperatures of diesel engine exhaust are below 400 °C, additional heat is required to remove the sulfur. This work describes a reformate-assisted “sulfur purge” method, which employs heat generated inside the NOx trap catalyst by exothermic chemical reactions between the oxygen in diesel exhaust and injected reformate (H2 + CO).
X