Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Development of an Integrated Electrified Powertrain for a Newly Developed Electric Vehicle

2013-04-08
2013-01-1759
This paper describes a newly developed electrified powertrain that incorporates various energy-saving improvements and is intended for use on a 2013 model year EV. Based on a 2011 model year EV that was specifically designed and engineered as a mass-produced EV, this powertrain integrates the traction motor, inverter and charging unit to achieve a smaller, lighter package for expanding application to more vehicles. Integration of the motor and inverter in particular reduced the part count for enhanced assembly ease, in addition to reducing heat transfer, noise and vibration. The specific features described in the paper are the three points below. Improving the layout of the inverter parts in order to downsize and integrate the inverter with the motor. Reducing the transfer of heat from the motor to the inverter. Reducing the excitation forces of the motor and optimizing the inverter for noise and vibration.
Technical Paper

Development of an Electric Motor for a Newly Developed Electric Vehicle

2014-04-01
2014-01-1879
This paper describes the development of the drive motor adopted on the newly developed 2013 Model Year (MY) electric vehicle (EV). Based on the 2011MY EV that was specifically designed and engineered for mass-production, the 2013MY powertrain integrates the electric motor, inverter and charging system into one unit in order to achieve downsizing and weight saving, unlike previous 2011 model which had these components segregated. In general, integration of all components into one unit causes deterioration of the noise and vibration performance of vehicles due to an increase in weight and the number of resonance parts. In order to overcome such problems associated with this integration, each component in the 2013 model has been optimized to reduce noise and vibration resulting in high degree of vehicle quietness.
X