Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Methodology for Predictive Diesel Combustion Simulation Using 0D Stochastic Reactor Model

2016-04-05
2016-01-0566
Stringent exhaust emission limits and new vehicle test cycles require sophisticated operating strategies for future diesel engines. Therefore, a methodology for predictive combustion simulation, focused on multiple injection operating points is proposed in this paper. The model is designated for engine performance map simulations, to improve prediction of NOx, CO and HC emissions. The combustion process is calculated using a zero dimensional direct injection stochastic reactor model based on a probability density function approach. Further, the formation of exhaust emissions is described using a detailed reaction mechanism for n-heptane, which involves 56 Species and 206 reactions. The model includes the interaction between turbulence and chemistry effects by using a variable mixing time profile. Thus, one is able to capture the effects of mixture inhomogeneities on NOx, CO and HC emission formation.
Technical Paper

Evaluating the EGR-AFR Operating Range of a HCCI Engine

2005-04-11
2005-01-0161
We present a computational tool to develop an exhaust gas recirculation (EGR) - air-fuel ratio (AFR) operating range for homogeneous charge compression ignition (HCCI) engines. A single cylinder Ricardo E-6 engine running in HCCI mode, with external EGR is simulated using an improved probability density function (PDF) based engine cycle model. For a base case, the in-cylinder temperature and unburned hydrocarbon emissions predicted by the model show a satisfactory agreement with measurements [Oakley et al., SAE Paper 2001-01-3606]. Furthermore, the model is applied to develop the operating range for various combustion parameters, emissions and engine parameters with respect to the air-fuel ratio and the amount of EGR used. The model predictions agree reasonably well with the experimental results for various parameters over the entire EGR-AFR operating range thus proving the robustness of the PDF based model.
X