Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Moving Deformable Barrier Test Procedure for Evaluating Small Overlap/Oblique Crashes

2012-04-16
2012-01-0577
In September 2009 the National Highway Traffic Safety Administration (NHTSA) published a report that investigated the incidence of fatalities to belted non-ejected occupants in frontal crashes involving late-model vehicles. The report concluded that after exceedingly severe crashes, the largest number of fatalities occurred in crashes involving poor structural engagement between the vehicle and its collision partner, present in crashes characterized as corner impacts, oblique crashes, impacts with narrow objects, and heavy vehicle underrides. By contrast, few if any of these 122 fatal crashes were full-frontal or offset-frontal impacts with good structural engagement, excepting crashes that were of extreme severity or the occupants that were exceptionally vulnerable. The intent of this research program is to develop a test protocol that replicates real-world injury potential in small overlap impacts (SOI) and oblique offset impacts (Oblique) in motor vehicle crashes.
Technical Paper

Repeatability and Reproducibility of Oblique Moving Deformable Barrier Test Procedure

2018-04-03
2018-01-1055
National Highway Traffic Safety Administration (NHTSA) has developed an Oblique Offset Moving Deformable Barrier test procedure. For this test procedure to be viable, it must be repeatable within each test facility and it must be reproducible between test facilities. Three tests of a single vehicle model were conducted at three different test facilities, a total of nine tests, to evaluate repeatability and reproducibility. The responses of the vehicle and its occupants were evaluated using three different methodologies to quantify the repeatability within a single test facility and reproducibility among the three test facilities. The first two methods evaluated the time-history of the measured data and the third method only used the peak values. Overall, this test series demonstrated repeatable and reproducible results for the OMDB, vehicle, and driver occupant in the oblique offset test procedure. The method using only the peak values indicates more variability.
Journal Article

Repeatability of a Small Overlap and an Oblique Moving Deformable Barrier Test Procedure

2013-04-08
2013-01-0762
NHTSA has developed two different moving deformable barrier-to-vehicle test procedures to assess the vehicle and occupant response in narrow overlap motor vehicle crashes. An assessment of test repeatability is one of the requirements necessary to accept the test procedure as viable. Previous methodologies, coefficient of variation (CV) and similarity analysis were developed to assess the repeatability of vehicle and occupant response in motor vehicle crash tests for full frontal and 40% overlap tests procedures. These will be used for this assessment. Three repeat tests were performed in each test procedure, with all other factors held constant: vehicles of the same make, model, and model year; moving deformable barriers of the same mass, velocity, and barrier face properties; and the same occupant - a THOR 50th percentile adult male in the driver's seat.
Technical Paper

NHTSA's Frontal Offset Research Program

2004-03-08
2004-01-1169
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the use of the 40 percent offset deformable barrier (ODB) crash test procedure to reduce death and injury, in particular debilitating lower extremity injuries in frontal offset collisions. This paper presents the results of 22 ODB crash tests conducted with 50th percentile male and 5th percentile female Hybrid III (HIII) dummies fitted with advanced lower legs, Thor-Lx/HIIIr and Thor-FLx/HIIIr, to assess the potential for debilitating and costly lower limb injuries. This paper also begins to investigate the implications that the ODB test procedure may have for fleet compatibility by evaluating the results from vehicle-to-vehicle crash tests.
X