Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

NOx Reduction with the Combinations on LNT and SCR in Diesel Applications

2013-09-08
2013-24-0161
Stricter emission limitations for NOx and particulates in mobile diesel applications will require the combinations of active aftertreatment methods like Diesel Particulate Filters (DPF), Selective Catalytic Reduction (SCR) with urea and Lean NOx Trap (LNT) in the 2010's. A new concept is the combination of LNT+SCR, which enables on-board synthesis of ammonia (LNT), which is then removed on the SCR catalyst. The main application for this kind system will be light-duty vehicles, where LNTs are already used and the low temperature deNOx is a main target. That combinatory system was investigated by developing and selecting PtRh/LNT and SCR catalysts for that particulate application, where the maximum temperature may reach 800°C and SCR should proceed without NO2 assistance. Pt-rich, PtRh/LNT with reasonable high loadings above 80g/cft resulted in a high NOx efficiency in the experimental laboratory conditions which created also on LNTs a higher NH3 concentration for the SCR unit.
Technical Paper

Catalyzed Particulate Filters for Mobile Diesel Applications

2007-01-23
2007-01-0041
Catalyst coated silicon carbide filters were developed and applied for light-duty and heavy-duty diesel applications. This catalyst coating is suitable also for industrial applications and to be used on cordierite or sintered metal filters. Development activities yield solgel type coating for particulate filters with properties allowing very thin coating, containing metal oxides interacting with active sites, e.g. precious metals (Pt, Pd). A tailored catalyst composition was developed for the catalytic activity and durability in oxidation and soot regeneration reactions. The combination of thermal and catalytic particulate oxidation by oxygen and NO2 was investigated using different regeneration strategies in engine exhaust and laboratory conditions. The passive regeneration by NO2 initiated around 310°C with CPF only. One of the main targets was to lengthen the intervals between active regeneration phases by catalyzed particulate filters which enhance passive regeneration properties.
Technical Paper

Optimization Methodologies for DPF Substrate-catalyst Combinations

2009-04-20
2009-01-0291
As the Diesel Particulate Filter (DPF) technology is nowadays established, research is currently focusing on meeting the emission and durability requirements by proper system design. This paper focuses on the optimum combination between the catalytic coating and substrate structural properties using experimental and simulation methodologies. The application of these methodologies will be illustrated for the case of SiC substrates coated with innovative sol-gel coatings. Coated samples are characterized versus their uncoated counterparts. Multi-dimensional DOC and DPF simulation models are used to study several effects parametrically and increase our understanding on the governing phenomena. The comparative analysis of DOC/DPF systems covers filtration – pressure drop characteristics, CO/HC/NO oxidation performance, effect of washcoat amount and catalyst dispersion on oxidation activity and finally passive regeneration performance.
Technical Paper

Effect of Oxygen Containing Biofuels on the Emissions with ExhaustGas Catalysts

2009-11-02
2009-01-2737
One of the first alternative fuels have been fossil crude oil based containing a small amount of biomass derived compounds (bioethanol or biodiesel). Biofuels usually contain oxygenated hydrocarbons such as alcohols or esters. The increasing use of alternative fuels will occur at the same time when various after-treatment systems (oxidation catalysts, filters, SCR catalysts) will be commercialized world-widely between 2010 and 2020. The effects of biofuels on emissions and emission catalysts were reviewed widely in this study. The change in raw emissions has effects on the selection, performance and durability of catalytic systems. Bioethanol has been used widely with emission catalysts since 1990's in Brazil. The results with three-way catalysts (TWC) were analyzed in those conditions. PtRh catalysts showed the better performance and durability than Pd containing TWCs.
Technical Paper

NOx Storage and Reduction on Differentiated Chemistry Catalysts for Lean Gasoline Vehicles

2001-09-24
2001-01-3665
NOx storage and reduction (NSR) catalysts are a widely investigated solution for lean gasoline applications. Open coating on metallic substrates gives a new opportunity to combine low and high temperature NSR catalysts into a converter by using differentiated chemistry on separate foils. A wide operation window for NOx conversion between 200-600°C was reached with alumina based NSR catalyst in appropriate conditions. Differentiation on separate foils can be made by NOx adsorption compounds, active metals (Pt, Rh), exhaust gas conditions or desulfation strategy. The desulfation, particularly from potassium-containing high temperature NSR catalysts, was decreased by 100°C by the addition of a small amount of TiO2. The combination of 3-way and NSR catalyst was designed by the size and lean-rich timings in laboratory and engine conditions. Low OSC PdRh (7:1) catalysts with higher loadings were used as 3-way catalysts.
Technical Paper

Performance and Durability of Pt- and PtPd-DOC in Diesel Particulate Filter Applications with Active Regeneration

2016-04-05
2016-01-0926
The tightening pollutant emission limits require the use of active aftertreatment methods for NOx and particulate matter (PM). Diesel particulate filter (DPF) is a part of commercial aftertreatment system (ATS). PM accumulated in DPF is continuously passively or periodically actively regenerated with the assistance of efficient diesel oxidation catalysts (DOC) having a high efficiency and durability in hydrocarbon (HC), NO and CO oxidation reactions. A high HC concentration during fuel feeding in active regeneration is demanding for DOC. The deactivation in air, hydrothermal, sulfation and active regeneration conditions were evaluated with platinum (Pt-) and platinum-palladium (PtPd)-DOCs by laboratory simulations using the ageing temperature and time as primary variables. The oxidizing conditions with a high oxygen concentration without HCs were deactivating DOCs clearly more than active regeneration conditions with a low oxygen and high HC concentration at 700-800°C.
Journal Article

Effects of Biofuel Blends on Performance of Exhaust Gas Catalyst: Ethanol and Acetaldehyde Reactions

2010-04-12
2010-01-0894
The use of biofuels in internal combustion engines changes the composition of the engine exhaust gas. When burning a biofuel blend, significant amounts of oxygenated hydrocarbons such as alcohols, ethers and aldehydes are present in the exhaust gas. It is known, that these compounds influence catalytic processes in exhaust gas converters. In this work we propose a global kinetic model for ethanol and acetaldehyde oxidation on commonly used Pt, PtPd and Pd-based catalytic oxidation converters of automobile exhaust gases. The mechanism is based on two steps: (i) partial oxidation of ethanol to acetaldehyde, and (ii) complete oxidation of acetaldehyde to CO₂ and H₂O. Kinetic parameters of ethanol and acetaldehyde reactions are evaluated on the basis of laboratory light-off experiments with several catalytic monolith samples (noble metal loading 9-140 g/cft; Pt, Pd, and PtPd; at space velocity 30 000-240 000 h-₁).
X