Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Oxygen Containing Biofuels on the Emissions with ExhaustGas Catalysts

2009-11-02
2009-01-2737
One of the first alternative fuels have been fossil crude oil based containing a small amount of biomass derived compounds (bioethanol or biodiesel). Biofuels usually contain oxygenated hydrocarbons such as alcohols or esters. The increasing use of alternative fuels will occur at the same time when various after-treatment systems (oxidation catalysts, filters, SCR catalysts) will be commercialized world-widely between 2010 and 2020. The effects of biofuels on emissions and emission catalysts were reviewed widely in this study. The change in raw emissions has effects on the selection, performance and durability of catalytic systems. Bioethanol has been used widely with emission catalysts since 1990's in Brazil. The results with three-way catalysts (TWC) were analyzed in those conditions. PtRh catalysts showed the better performance and durability than Pd containing TWCs.
Technical Paper

Performance and Durability of Pt- and PtPd-DOC in Diesel Particulate Filter Applications with Active Regeneration

2016-04-05
2016-01-0926
The tightening pollutant emission limits require the use of active aftertreatment methods for NOx and particulate matter (PM). Diesel particulate filter (DPF) is a part of commercial aftertreatment system (ATS). PM accumulated in DPF is continuously passively or periodically actively regenerated with the assistance of efficient diesel oxidation catalysts (DOC) having a high efficiency and durability in hydrocarbon (HC), NO and CO oxidation reactions. A high HC concentration during fuel feeding in active regeneration is demanding for DOC. The deactivation in air, hydrothermal, sulfation and active regeneration conditions were evaluated with platinum (Pt-) and platinum-palladium (PtPd)-DOCs by laboratory simulations using the ageing temperature and time as primary variables. The oxidizing conditions with a high oxygen concentration without HCs were deactivating DOCs clearly more than active regeneration conditions with a low oxygen and high HC concentration at 700-800°C.
Journal Article

Effects of Biofuel Blends on Performance of Exhaust Gas Catalyst: Ethanol and Acetaldehyde Reactions

2010-04-12
2010-01-0894
The use of biofuels in internal combustion engines changes the composition of the engine exhaust gas. When burning a biofuel blend, significant amounts of oxygenated hydrocarbons such as alcohols, ethers and aldehydes are present in the exhaust gas. It is known, that these compounds influence catalytic processes in exhaust gas converters. In this work we propose a global kinetic model for ethanol and acetaldehyde oxidation on commonly used Pt, PtPd and Pd-based catalytic oxidation converters of automobile exhaust gases. The mechanism is based on two steps: (i) partial oxidation of ethanol to acetaldehyde, and (ii) complete oxidation of acetaldehyde to CO₂ and H₂O. Kinetic parameters of ethanol and acetaldehyde reactions are evaluated on the basis of laboratory light-off experiments with several catalytic monolith samples (noble metal loading 9-140 g/cft; Pt, Pd, and PtPd; at space velocity 30 000-240 000 h-₁).
X