Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation of Exhaust Unburned Hydrocarbons from a Spark Ignition Engine, Originating from In-Cylinder Crevices

1996-10-01
961956
In this paper the effect of in-cylinder crevices formed by the piston cylinder clearance, above the first ring, and the spark plug cavity, on the entrapment of unburned fuel air mixture during the late compression, expansion and exhaust phases of a spark ignition engine cycle, have been simulated using the Computational Fluid Dynamic (CFD) code KIVA II. Two methods of fuelling the engine have been considered, the first involving the carburetion of a homogeneous fuel air mixture, and the second an attempt to simulate the effects of manifold injection of fuel droplets into the cylinder. The simulation is operative over the whole four stroke engine cycle, and shows the efflux of trapped hydrocarbon from crevices during the late expansion and exhaust phases of the engine cycle.
Technical Paper

Application of CFD to the Matching of In-Cylinder Fuel Injection and Air Motion in a Four Stroke Gasoline Engine

1997-05-01
971601
The in cylinder air motion, fuel air mixing, evaporation, combustion and exhaust emissions have been simulated for a four stroke direct injection gasoline engine using the KIVA II code. A strong controlled tumbling air motion was created in the cylinder, through a combination of a conventional pentroof four valve cylinder head, in conjunction with a piston having a stepped crown and offset combustion bowl. A range of injection strategies were employed to optimise combustion rate and exhaust emission (NOx and unburned hydrocarbons (fuel)), at two operating conditions - one with a stoichiometric air fuel mixture and the other with a lean mixture of 30:1 air/fuel ratio. Injection directed towards the piston bowl with a hollow cone jet, in a single pulse, has shown the best results regarding burned mass fraction and level of unburned HC. Fuel concentration, air motion, combustion characteristics and pollutants level are presented for lean and stoichiometric cases.
X