Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

High-Pressure Hydrogen Jet and Combustion Characteristics in a Direct-Injection Hydrogen Engine

2011-08-30
2011-01-2003
Hydrogen spark-ignition (SI) engines based on direct-injection (DI) promise significant advantages in terms of thermal efficiency and power output, as well as a means of overcoming problems related to knocking, backfiring, and pre-ignition. In a DI hydrogen engine, the fuel/air mixture is formed by injecting a jet of hydrogen into the air inside the combustion chamber. An Ar-ion laser beam was used as a light source to visualize the hydrogen jet in a constant-volume chamber. This allowed us to study the structure of the jet in addition to other physical processes resulting from hydrogen gas injection. Combustion experiments were conducted in a single-cylinder SI optical research engine equipped with a DI system to detect the early kernel growth assisted by the spark, as well as flame propagation. Various equivalence ratios and fuel injection timings were analyzed to identify the effects on combustion.
Technical Paper

Effect of Fuel Injection Parameters on Engine Performance and Emissions of a Supercharged Producer Gas-Diesel Dual Fuel Engine

2009-06-15
2009-01-1848
This study investigated the effect of some pilot fuel injection parameters, like injection timing, injection pressure and injection quantity on engine performance and exhaust emissions of a supercharged producer gas-diesel dual fuel engine. The engine has been tested to be used as a co-generation engine and its power output is an important matter. Experiments have been done to optimize the injection timing, injection pressure and injection quantity for the maximization of engine power. At constant injection pressures, there is an optimum amount of pilot injection quantity for that maximum engine power is developed without knocking and within the limit of maximum cylinder pressure. Above or below of that amount engine power is decreased. Higher injection pressures generally show better results than lower ones. However, good results can also be obtained with lower injection pressure, if maximum power timings can be selected.
Technical Paper

Mixture Formation Process in a Spark-Ignition Engine with Ethanol Blended Gasoline

2009-06-15
2009-01-1957
In this study, fuel concentration measurements in a spark-ignition (SI) engine with ethanol blended gasoline were carried out using an optical sensor installed in the spark plug with laser infrared absorption technique. The spark plug sensor for in-situ fuel concentration measurement was applied to a port injected SI engine. The molar absorption coefficients of ethanol blended gasoline were determined for various pressures and temperatures in advance using a constant volume vessel with electric heating system. Ethanol blended gasoline with high volumetric ratios shows lower molar absorption coefficients due to lower molar absorption coefficients of ethanol. The molar absorption coefficients of ethanol blended gasoline can be estimated by considering the molar fraction of each component.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to a Port Injected Lean-Burn Engine

2004-03-08
2004-01-1353
In this study, a spark plug sensor for in-situ fuel concentration measurement was applied to a port injected lean-burn engine. Laser infrared absorption method was employed and a 3.392 μm He-Ne laser that coincides with the absorption line of hydrocarbons was used as a light source. In this engine, the secondary valve lift height of intake system was controlled to obtain appropriate swirl and tumble flow in order to achieve lean-burn with the characteristics of intake flow. For such in-cylinder stratified mixture distribution, the fuel concentration near the spark plug is very important factor that affects the combustion characteristics. Therefore, the mixture formation process near the spark plug was investigated with changing fuel injection timing. Under the intake stroke, the timing that fuel passed through near the spark plug depended largely on the fuel injection timing.
Technical Paper

In-Situ Fuel Concentration Measurement near Spark Plug by 3.392 mm Infrared Absorption Method - Pressure and Temperature Dependence of the Gasoline Molar Absorption Coefficient

2006-04-03
2006-01-0182
This paper describes the development and application of a spark plug sensor using a 3.392 μm infrared absorption technique to quantify the instantaneous gasoline concentration near the spark plug. We developed an in situ laser infrared absorption method using a spark plug sensor and a 3.392 μm He-Ne laser as the light source; this wavelength coincides with the absorption line of hydrocarbons. First, we established a database of the molar absorption coefficients of premium gasoline at different pressures and temperatures, and determined that the coefficient decreased with increasing pressure above atmospheric pressure. We then demonstrated a procedure for measuring the gasoline concentration accurately using the infrared absorption technique. The history of the molar absorption coefficient of premium gasoline during the experiment was obtained from the established database using measured in-cylinder pressures and temperatures estimated by taking the residual gas into consideration.
Technical Paper

Effect of Hydrogen Concentration on Engine Performance, Exhaust Emissions and Operation Range of PREMIER Combustion in a Dual Fuel Gas Engine Using Methane-Hydrogen Mixtures

2015-09-01
2015-01-1792
A single cylinder, supercharged dual fuel gas engine with micro-pilot fuel injection is operated using methane only and methane-hydrogen mixtures. Methane only experiments were performed at various equivalence ratios and equivalence ratio of 0.56 is decided as the optimum operating condition based on engine performance, exhaust emissions and operation stability. Methane-hydrogen experiments were performed at equivalence ratio of 0.56 and 2.6 kJ/cycle energy supply rate. Results show that indicated mean effective pressure is maintained regardless of hydrogen content of the gaseous fuel while thermal efficiency is improved and presence of hydrogen reduces cyclic variations. Increasing the fraction of hydrogen in the fuel mixture replaces hydrocarbon fuels and reduces carbon monoxide and hydrocarbon emissions.
X