Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Gas Temperature Measurement in a DME-HCCI Engine using Heterodyne Interferometry with Spark-Plug-in Fiber-Optic Sensor

2007-07-23
2007-01-1848
Non-intrusive measurement of transient unburned gas temperatures was developed with a fiber-optic heterodyne interferometry system. Using the value of the Gladstone-Dale constant for DME gas and combustion pressure we can calculate the in-cylinder temperature inside unburned and burned region. In this experimental study, it was performed to set up a fiber-optic heterodyne interferometry technique to measure the temperature before and behind the combustion region in a DME-HCCI engine. At first, measured temperature was almost the same as the temperature history assuming that the process that changes of the unburned and the burned are polytropic. In addition, we measured the temperature after combustion which of condition was burned gas with DME-HCCI combustion. The developed heterodyne interferometry used the spark-plug-in fiber-optic sensor has a good feasibility to measure the unburned and burned temperature history.
Technical Paper

Visualization of Autoignited Kernel and Propagation of Pressure Wave during Knocking Combustion in a Hydrogen Spark-Ignition Engine

2009-06-15
2009-01-1773
Investigation of knocking combustion in a hydrogen spark-ignition engine is one of the major challenges for future vehicle development. The knock phenomenon in a Spark-Ignition (SI) engine is caused by autoignition of the unburned gas ahead of the flame. The explosive combustion of the end-gas creates a pressure wave that leads to damage of the cylinder wall and the piston head of the engine. We observed autoignition in the end-gas region due to compression by the propagating flame front using a high-speed colour video camera through the optically accessible cylindrical quartz window on the top of the cylinder head. Moreover, a high-speed monochrome video camera operating at a speed of 250, 000 frame/s was used to measure the pressure wave propagation. The goal of this research was to improve our ability to describe the effect of the autoignition process on the end-gas and propagating pressure wave during knocking combustion with the help of a high-speed video camera.
Technical Paper

Effect of EGR on Combustion and Exhaust Emissions in Supercharged Dual-Fuel Natural Gas Engine Ignited with Diesel Fuel

2009-06-15
2009-01-1832
The combustion and exhaust emissions characteristics of a supercharged dual-fuel natural gas engine with a single cylinder were analyzed. We focused on EGR (Exhaust Gas Recirculation) to achieve higher thermal efficiency and lower exhaust emissions. The combustion of diesel fuel (gas oil) as ignition sources was visualized using a high-speed video camera from the bottom of a quartz piston. The luminous intensity and flame decreased as the EGR rate increased. Furthermore, the ignition delay became longer due to the EGR. Characteristics of the combustion and exhaust emissions were investigated with changing EGR rates under supercharged conditions. The indicated mean effective pressure and thermal efficiency decreased with increasing EGR rate. In addition, NOx emissions decreased due to the EGR. In this study two-stage combustion was observed.
Technical Paper

Effect of Fuel Injection Parameters on Engine Performance and Emissions of a Supercharged Producer Gas-Diesel Dual Fuel Engine

2009-06-15
2009-01-1848
This study investigated the effect of some pilot fuel injection parameters, like injection timing, injection pressure and injection quantity on engine performance and exhaust emissions of a supercharged producer gas-diesel dual fuel engine. The engine has been tested to be used as a co-generation engine and its power output is an important matter. Experiments have been done to optimize the injection timing, injection pressure and injection quantity for the maximization of engine power. At constant injection pressures, there is an optimum amount of pilot injection quantity for that maximum engine power is developed without knocking and within the limit of maximum cylinder pressure. Above or below of that amount engine power is decreased. Higher injection pressures generally show better results than lower ones. However, good results can also be obtained with lower injection pressure, if maximum power timings can be selected.
Technical Paper

Fuel Breakup Near Nozzle Exit of High-Pressure Swirl Injector for Gasoline Direct Injection Engine

2004-03-08
2004-01-0542
Experimental investigations of fuel breakup very close to nozzle of practical high-pressure swirl injector, which is used in gasoline direct injection (GDI) engine, were carried out. In GDI engines, fuel is directly injected into cylinder therefore the spray characteristics and mixture formation are of primary importance. In this research, visualizations of primary spray formation process were demonstrated using a high-speed video camera (maximum speed: 1Mfps) with a long-distance microscope. Initial state and development of the spray were discussed under the different injection pressure condition. During the injection period, the length and thickness of the liquid sheet, which is produced from the nozzle exit, were measured using Ar-ion laser sheet and high-speed camera. Primary spray structure and behavior of liquid sheet, especially surface wave of liquid sheet, at nozzle exit were discussed using obtained images.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to a Port Injected Lean-Burn Engine

2004-03-08
2004-01-1353
In this study, a spark plug sensor for in-situ fuel concentration measurement was applied to a port injected lean-burn engine. Laser infrared absorption method was employed and a 3.392 μm He-Ne laser that coincides with the absorption line of hydrocarbons was used as a light source. In this engine, the secondary valve lift height of intake system was controlled to obtain appropriate swirl and tumble flow in order to achieve lean-burn with the characteristics of intake flow. For such in-cylinder stratified mixture distribution, the fuel concentration near the spark plug is very important factor that affects the combustion characteristics. Therefore, the mixture formation process near the spark plug was investigated with changing fuel injection timing. Under the intake stroke, the timing that fuel passed through near the spark plug depended largely on the fuel injection timing.
Technical Paper

Transient Temperature Measurement of Gas Using Fiber Optic Heterodyne Interferometry

2001-05-07
2001-01-1922
A fiber optical heterodyne interferometry system was developed to obtain high temporal resolution temperature histories of unburned and burned gases non-intrusively. The effective optical path length of the test beam changes with the gas density and corresponding changes of the refractive index. Therefore, the temperature history of the gas can be determined from the pressure and phase shift of the interference signal. The resolution of the temperature measurement is approximately 0.5 K, and is dependent upon both the sampling clock speed of the A/D converter and the length of the test section. A polarization-preserving fiber is used to deliver the test beam to and from the test section, to improve the feasibility of the system as a sensor probe. This optical heterodyne interferometry system may also be used for other applications that require gas density and pressure measurements with a fast response time, or a transient temperature record.
Technical Paper

Hydrogen Combustion and Exhaust Emissions Ignited with Diesel Oil in a Dual Fuel Engine

2001-09-24
2001-01-3503
Hydrogen is expected to be one of the most prominent fuels in the near future for solving greenhouse problem, protecting environment and saving petroleum. In this study, a dual fuel engine of hydrogen and diesel oil was investigated. Hydrogen was inducted in a intake port with air and diesel oil was injected into the cylinder. The injection timing was changed over extremely wide range. When the injection timing of diesel fuel into the cylinder is advanced, the diesel oil is well mixed with hydrogen-air mixture and the initial combustion becomes mild. NOx emissions decrease because of lean premixed combustion without the region of high temperature of burned gas. When hydrogen is mixed with inlet air, emissions of HC, CO and CO2 decrease without exhausting smoke while brake thermal efficiency is slightly smaller than that in ordinary diesel combustion.
Technical Paper

Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine

2002-10-21
2002-01-2723
A dual fuel engine fueled with methane from an inlet port and ignited with diesel fuel was prepared. This study focuses on the effects of early injection and exhaust gas recirculation (EGR) on the characteristics of combustion and exhaust emissions. The injection timing was changed between TDC and 50 degrees before the TDC. In the early injection timing, smoke was never seen and hydrocarbons were smaller compared with those at the normal injection timing. However, the combustion becomes too early to obtain an appropriate torque when the equivalence ratio increases. Then, moderate EGR was very effective to force the combustion to retard with lower NOx, higher thermal efficiency and almost the same hydrocarbons and carbon monoxide. The engine operated even under the condition of stoichiometric mixture.
Technical Paper

Ignition, Combustion and Exhaust Emission Characteristics of Micro-pilot Ignited Dual-fuel Engine Operated under PREMIER Combustion Mode

2011-08-30
2011-01-1764
The objective of this study is to investigate the performance and emissions in a pilot-ignited supercharged dual-fuel engine, fueled with different types of gaseous fuels under various equivalence ratios. It is found that if certain operating conditions are maintained, conventional dual-fuel engine combustion mode can be transformed to the combustion mode with the two-stage heat release. This mode of combustion was called the PREMIER (PREmixed Mixture Ignition in the End-gas Region) combustion. During PREMIER combustion, initially, the combustion progresses as the premixed flame propagation and then, due to the mixture autoignition in the end-gas region, ahead of the propagating flame front, the transition occurs with the rapid increase in the heat release rate.
Technical Paper

Effects of Injection Pressure, Timing and EGR on Combustion and Emissions Characteristics of Diesel PCCI Engine

2011-08-30
2011-01-1769
Effects of injection parameters on combustion and emission characteristics of diesel PCCI engine operating on optical and test engine was investigated. PCCI combustion was achieved through slightly narrow included angle injector, low compression ratio coupled with exhaust gas recirculation. Analysis based on diesel spray evolution, combustion process visualization and analysis was carried out. Spray penetration was evaluated and related to the exhaust emissions. Advancing the injection timing and EGR extended the ignition delay, decreased NOx emissions and increased HC, smoke and CO emissions. Higher injection pressure led to low emissions of NOx, smoke, HC and comparable CO. Optimum spray targeting position for minimum emission was identified. Impingement on the piston surface led to deterioration of emissions and increased fuel consumption while spray targeting the upper edge of Derby hat wall showed improvement in emission and engine performance.
Technical Paper

In-Situ Fuel Concentration Measurement near Spark Plug by 3.392 mm Infrared Absorption Method - Pressure and Temperature Dependence of the Gasoline Molar Absorption Coefficient

2006-04-03
2006-01-0182
This paper describes the development and application of a spark plug sensor using a 3.392 μm infrared absorption technique to quantify the instantaneous gasoline concentration near the spark plug. We developed an in situ laser infrared absorption method using a spark plug sensor and a 3.392 μm He-Ne laser as the light source; this wavelength coincides with the absorption line of hydrocarbons. First, we established a database of the molar absorption coefficients of premium gasoline at different pressures and temperatures, and determined that the coefficient decreased with increasing pressure above atmospheric pressure. We then demonstrated a procedure for measuring the gasoline concentration accurately using the infrared absorption technique. The history of the molar absorption coefficient of premium gasoline during the experiment was obtained from the established database using measured in-cylinder pressures and temperatures estimated by taking the residual gas into consideration.
Technical Paper

Effect of Bio-Gas Contents on SI Combustion for a Co-Generation Engine

2015-09-01
2015-01-1946
Bio-gas as an internal combustion (I.C.) engine fuel has many advantages such as cheaper fuel cost, low emission levels and especially the neutral recirculation loop of carbon dioxide, which is one of the principal factors in global warming. In this study, positive potentialities of bio-gas were investigated using a micro co-generation engine. The mixing ratio of methane (CH4) and carbon dioxide (CO2) was changed to simulate various types of bio-gases. Intake air and fuel flow rates were controlled to change the equivalence ratio. The engine load condition could be changed with the electric output power used. Base on the result, the higher CO2 content rate slowed down the engine speed in the same load condition and the combustion speed generally decreased under the same load condition with maintaining the engine speed. However thermal efficiency increased with lean burn conditions and NOX emission decreased with higher CO2 mixing rates.
Technical Paper

Effect of Hydrogen Concentration on Engine Performance, Exhaust Emissions and Operation Range of PREMIER Combustion in a Dual Fuel Gas Engine Using Methane-Hydrogen Mixtures

2015-09-01
2015-01-1792
A single cylinder, supercharged dual fuel gas engine with micro-pilot fuel injection is operated using methane only and methane-hydrogen mixtures. Methane only experiments were performed at various equivalence ratios and equivalence ratio of 0.56 is decided as the optimum operating condition based on engine performance, exhaust emissions and operation stability. Methane-hydrogen experiments were performed at equivalence ratio of 0.56 and 2.6 kJ/cycle energy supply rate. Results show that indicated mean effective pressure is maintained regardless of hydrogen content of the gaseous fuel while thermal efficiency is improved and presence of hydrogen reduces cyclic variations. Increasing the fraction of hydrogen in the fuel mixture replaces hydrocarbon fuels and reduces carbon monoxide and hydrocarbon emissions.
Technical Paper

In-spark-plug Sensor for Analyzing the Initial Flame and Its Structure in an SI Engine

2005-04-11
2005-01-0644
An in-spark-plug flame sensor was developed to measure local chemiluminescence near the spark gap in a practical spark-ignition (SI) engine in order to study the development of the initial flame kernel, flame front structure, transient phenomena, and the correlation between the initial flame kernel structure and cyclic variation in the flame front structure, which influences engine performance directly. The sensor consists of a commercial instrumented spark plug with small Cassegrain optics and an optical fiber. The small Cassegrain optics were developed to measure the local chemiluminescence intensity profile and temporal history of OH*, CH*, and C2* at the flame front formed in a turbulent premixed flame in an SI engine. A highresolution monochromator with an intensified chargecoupled device (ICCD) and spectroscopy using optical filters and photomultiplier tubes (PMTs) were used to measure the time-series of the three radicals, as well as the in-cylinder pressure.
Technical Paper

Combustion Diagnostics Using Time-Series Analysis of Radical Emissions in a Practical Engine

2015-11-17
2015-32-0748
The objective of this study is to investigate the initial flame propagation characteristics of turbulent flame in an engine cylinder through time-series analysis of radical emissions. A spark plug with optical fiber was developed in this study. The plug sensor is M12 type that makes it possible to mount in practical engine. The spark plug sensor can detect radical emissions in time-resolved spectra through time-series spectroscopic measurement. In this spectra, some kinds of radical emissions such as OH*(306nm), CH*(431nm) and C2*(517nm) based on principle of chemiluminescence are observed. In this study, the spark plug sensor was applied to both compression-expansion machine (CEM) and practical engine. As a result of CEM with bottom viewed high-speed camera, three kinds of spectra could be detected.
X