Refine Your Search

Topic

Search Results

Journal Article

Using LES for Predicting High Performance Car Airbox Flow

2009-04-20
2009-01-1151
Aerodynamic had played a primary role in high performance car since the late 1960s, when introduction of the first inverted wings appeared in some formulas. Race car aerodynamic optimisation is one of the most important reason behind the car performance. Moreover, for high performance car using naturally aspired engine, car aerodynamic has a strong influence also on engine performance by its influence on the engine airbox. To improve engine performance, a detailed fluid dynamic analysis of the car/airbox interaction is highly recommended. To design an airbox geometry, a wide range of aspects must be considered because its geometry influences both car chassis design and whole car aerodynamic efficiency. To study the unsteady fluid dynamic phenomena inside an airbox, numerical approach could be considered as the best way to reach a complete integration between chassis, car aerodynamic design, and airbox design.
Journal Article

Investigation of the Flow Unsteadiness of Car Air-Box by Using LES

2009-09-13
2009-24-0128
Today, high performance race car efficiency is based on a very fine equilibrium between aerodynamic efficiency, engine performance, and chassis behaviour. In particular, from the engine point of view, one way to increase the performance is to increase its volumetric efficiency. The aim of this paper is to present the application of the Large Eddy Simulation (LES) approach for the fluid dynamic analysis of a high performance race car airbox geometry. For a naturally aspired engine, the fluid dynamic optimisation of the airbox geometry means to optimise the energy conversion (from dynamic to static pressure) inside the airbox itself, therefore to increase the flow energy on the engine trumpet sections. The LES approach seems to be the best candidate to investigate such a flow since flow unsteadiness are expected to affect airbox efficiency in terms of pressure recovery. The airbox simulations were performed by using the commercial CFD code Fluent v6.3.
Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Technical Paper

Thermal Efficiency Enhancement for Future Rightsized Boosted GDI Engines - Effectiveness of the Operation Point Strategies Depending on the Engine Type

2021-09-05
2021-24-0009
Internal combustion engines are the primary transportation mover for today society and they will likely continue to be for decades to come. Hybridization is the most common solution to reduce the petrol-fuels consumption and to respect the new raw emission limits. The gasoline engines designed for running together with an electric motor need to have a very high thermal efficiency because they must work at high loads, where engine thermal efficiency is close to the maximum one. Therefore, the technical solutions bringing to thermal efficiency enhancement were adopted on HVs (Hybrid Vehicles) prior to conventional vehicles. In these days, these solutions are going to be adopted on conventional vehicles too. The purpose of this work was to trace development guidelines useful for engine designers, based on the target power and focused on the maximization of the engine thermal efficiency, following the engine rightsizing concept.
Journal Article

Relating Knocking Combustions Effects to Measurable Data

2015-09-06
2015-24-2429
Knocking combustions heavily influence the efficiency of Spark Ignition engines, limiting the compression ratio and sometimes preventing the use of Maximum Brake Torque (MBT) Spark Advance (SA). A detailed analysis of knocking events can help in improving the engine performance and diagnostic strategies. An effective way is to use advanced 3D Computational Fluid Dynamics (CFD) simulation for the analysis and prediction of the combustion process. The standard 3D CFD approach based on RANS (Reynolds Averaged Navier Stokes) equations allows the analysis of the average engine cycle. However, the knocking phenomenon is heavily affected by the Cycle to Cycle Variation (CCV): the effects of CCV on knocking combustions are then taken into account, maintaining a RANS CFD approach, while representing a complex running condition, where knock intensity changes from cycle to cycle.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Journal Article

A Control-Oriented Knock Intensity Estimator

2017-09-04
2017-24-0055
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming frequent in motorsport applications. On the other hand, cylinder pressure signals are often available in the calibration stage, where SA feedback-control based on the pressure signal can be used to avoid damages to the engine during automatic calibration. A predictive real-time combustion model could help optimizing engine performance, without exceeding the allowed knock severity.
Journal Article

A Numerical Model for Flash Boiling of Gasoline-Ethanol Blends in Fuel Injector Nozzles

2011-09-11
2011-24-0003
Fuels are formulated by a variety of different components characterized by chemical and physical properties spanning a wide range of values. Changing the ratio between the mixture component molar fractions, it is possible to fulfill different requirements. One of the main properties that can be strongly affected by mixture composition is the volatility that represents the fuel tendency to vaporize. For example, changing the mixture ratio between alcohols and hydrocarbons, it is possible to vary the mixture saturation pressure, therefore the fuel vaporization ratio during the injection process. This paper presents a 1D numerical model to simulate the superheated injection process of a gasoline-ethanol mixture through real nozzle geometries. In order to test the influence of the mixture properties on flash atomization and flash evaporation, the simulation is repeated for different mixtures characterized by different gasoline-ethanol ratio.
Technical Paper

Assessment of a Numerical Methodology for Large Eddy Simulation of ICE Wall Bounded Non-Reactive Flows

2007-10-29
2007-01-4145
The increasing of the overall engine performance requires the investigation of the unsteady engine phenomena affecting intake air flow and the air-fuel mixing process. The “standard” RANS methodology often doesn't allow one to achieve a qualitative and quantitative accurate prediction of these phenomena. The aim of this paper is to show the potential and the limits of LES numerical technique in the simulation of actual IC engine flows and to assess the influence of some basic parameters on the LES simulation results. The paper introduces the use of a merit parameter suggested by Pope for evaluating the quality of the LES solution. The CFD code used is Fluent v6.2 and two basic test cases have been simulated. The first one is the flow over a backward facing step in order to perform a preliminary parametric numerical analysis. A one-equation dynamic subgrid-scales turbulence model is used.
Technical Paper

CFD Analysis of Injection Timing Influence on Mixture Preparation in a PFI Motorcycle Engine

2006-11-13
2006-32-0022
The efficiency of engine operations, i.e. cold start, transient response and operating at idle, depends on the capability of the injection fuel system to promote a homogeneous mixture formation through an efficient interaction with engine fluid dynamics and geometry. The paper presents the development and the application of a methodology for running a CFD PFI engine simulation. A preliminary assessment of the wall-film and droplet-wall interaction sub models has been carried out in order to validate the methodology. Then a three-step numerical procedure has been adopted. The first two steps are aimed to properly initialize the secondary breakup model depending on the type of injector installed on board in order to achieve accurate predictions of spray characteristics.
Technical Paper

Development of an Ignition Model for S.I. Engines Simulation

2007-04-16
2007-01-0148
An ignition model based on Lagrangian approach was set-up. A lump model for the electrical circuit of the spark plug is used to compute breakdown and glow energy. At the end of shock wave and very first plasma expansion, a spherical kernel is deposited inside the gas flow at spark plug location. A simple model allows one to compute initial flame kernel radius and temperature based on physical mixture properties and spark plug characteristics. The sphere surface of the kernel is discretized by triangular elements which move radially according to a lagrangian approach. Expansion velocity is computed accounting for both heat conduction effect at the highest temperatures and thermodynamic energy balance at relatively lower temperatures. Turbulence effects and thermodynamic properties of the air-fuel mixture are accounted for. Restrikes are possible depending on gas flow velocity and mixture quality at spark location.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

LES Simulation of ICE Non-Reactive Flows in Fixed Grids

2008-04-14
2008-01-0959
The increasing of the overall engine performance requires the investigation of the unsteady engine phenomena affecting intake air flow and the air-fuel mixing process. The “standard” RANS methodology often doesn't allow one to achieve a qualitative and quantitative accurate prediction of these phenomena. The aim of this paper is to show the potential and the limits of LES numerical technique in the simulation of actual IC engine non reactive flows in fixed grids. The paper introduces the use of a merit parameter suggested by Pope for evaluating the quality of the LES turbulence resolution [14]. A basic engine steady flow bench case has been simulated. The CFD code used is Fluent v6.2. The numerical results of a previous LES basic numerical analysis were used for setting up calculations. Large Eddy Simulations using the dynamic one-equation model and a simulation with the WALE sgs model [25] have been performed.
Technical Paper

Parallel Computation of Mesh Motion for CFD of IC Engines

2008-04-14
2008-01-0976
The burden of creating meshes increases the cost of Computational Fluid Dynamics (CFD) and slows the rate at which new engine geometries can be investigated. Internal Combustion Engines (ICEs) with moving valves and piston present a special challenge, often requiring numerous different target meshes or case-specific codes for adapting the mesh. The goal of the present paper is to facilitate remeshing by calculating vertex motion, in parallel, for hybrid tetrahedral and hexahedral meshes. The calculated vertex motion is intended to maintain good mesh quality and reduce the need for interpolation to a new mesh. The demonstrated approach uses Laplacian-based smoothing for hexahedral cells and optimization-based smoothing for tetrahedral cells. Further, planar and cylindrical surfaces in the engine geometry are automatically recognized. As the engine volume changes shape, vertices may slide along the planar and cylindrical surfaces.
Technical Paper

The Prediction of Flash Atomization in GDI Multi-Hole Injectors

2009-04-20
2009-01-1501
A 1D flash evaporation model is being developed to capture the effects of bubble nucleation and growth inside multi-hole injector nozzles to investigate the flash evaporation in fuel injector sprays in Gasoline Direct Injection (GDI). The 1D nozzle flow model helps to understand the effects of main physical and geometrical parameter in promoting the fuel flash evaporation. This model is based on a weakly compressible homogenous two-phase mixture assumption. A non-equilibrium model is used to predict the vapour formation rate along the nozzle. A fully explicit method based on a two-step Lax-Wendroff method is used together with a TVD scheme. An atomisation model has been proposed to correlate the void fraction at nozzle exit to probability function of the liquid droplets generated from flashing atomisation. An accurate two phase speed of sound is adopted allowing one to predict the choked flow conditions once saturation has been reached.
Technical Paper

Racing Car Airbox Performance Prediction Using LES Simulation Approach

2008-10-06
2008-01-2388
This paper deals with the assessment of the use of LES simulation technique on a real airbox geometry designed for a high-performance engine. Large Eddy Simulation is a promising technique to yield a CFD tool able to predict flow unsteadiness: in LES modeling only a small part of the energy spectrum is modeled while the large scales of motion (correlated with the energy transport phenomena) are directly resolved. Given this observation, LES model becomes a very attractive tool for the fluid dynamic analysis of components characterized by a strong dynamic flow behavior like an airbox geometry. The airbox simulations were performed by Fluent v6.3 CFD code and the Wall Adaptive Local Eddy-Viscosity (WALE) sub-grid (sgs) stress model was used. A bounded second order central differencing scheme (BCD) was adopted and a discussion of the kinetic energy conservation attitude of this scheme was performed.
Technical Paper

Analysis of Air/Cavitation Interaction Inside a Rotary Vane Pump for Application on Heavy Duty Engine

2009-06-15
2009-01-1943
This paper deals with a CFD three-dimensional multiphase simulation of rotary vane pump. The paper presents a suitable methodology for the investigation of the cavitation effects and/or incondensable gases. All the 3D simulations were performed by using Fluent v12 (Beta version). A moving mesh methodology was defined to reproduce the change-in-time shape of the internal pump volumes. In particular, the pump analysis was focused on the generation, and evolution of the cavitation phenomena inside the machine to identify the locations where this phenomena could occur. Moreover, the influence of incondensable gas dissolved inside the operator fluid on both pump performance and cavitation evolution was evaluated. Significant results were obtained about the analysis of incondensable gas influence on the cavitation evolution showing that, today, CFD analysis can provide detailed information on such harmful phenomena which can not be achieved by experiments.
Technical Paper

Multi-dimensional modeling of the air/fuel mixture formation process in a PFI engine for motorcycle applications

2009-09-13
2009-24-0015
The preparation of the air-fuel mixture represents one of the most critical tasks in the definition of a clean and efficient SI engine. Therefore it becomes necessary to consolidate the numerical methods which are able to describe such a complex physical process. Within this context, the authors developed a CFD methodology into an open-source code to investigate the air-fuel mixture formation process in PFI engines. Attention is focused on moving mesh algorithms, Lagrangian spray modeling and spray-wall interaction modeling. Since moving grids are involved and the mesh quality during motion strongly influences the computed in-cylinder flow-field, a FEM-based automatic mesh motion solver combined with topological changes was adopted to preserve the grid quality in presence of high boundary deformations like the interaction between the piston bowl and the valves during the valve-overlap period.
Technical Paper

LES Simulation to Predict the Cylinder Intake Phase Influence on the Airbox Efficiency

2010-04-12
2010-01-0549
The fluid dynamic of fully turbulent flows is characterized by several length scales bounded between the flow field dimension (large scales) and the diffusive action of the molecular viscosity (small scale). The large scales of motion are responsible of the main momentum transport while the small scales of motion are responsible of the energy dissipation into heat. In some cases the analysis of the large scales could be enough to explain the behaviour of the fluid dynamic system under investigation but, in other cases, the effect of all the turbulent scales have to be considered. A classic example of the latter working condition is the aerodynamic field where the efficiency is dictated by a fine equilibrium between mean flow conditions (driven by large turbulent scales) and laminar/turbulent boundary layer evolution (driven by small turbulent scales).
X