Refine Your Search

Topic

Search Results

Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Technical Paper

Thermal Efficiency Enhancement for Future Rightsized Boosted GDI Engines - Effectiveness of the Operation Point Strategies Depending on the Engine Type

2021-09-05
2021-24-0009
Internal combustion engines are the primary transportation mover for today society and they will likely continue to be for decades to come. Hybridization is the most common solution to reduce the petrol-fuels consumption and to respect the new raw emission limits. The gasoline engines designed for running together with an electric motor need to have a very high thermal efficiency because they must work at high loads, where engine thermal efficiency is close to the maximum one. Therefore, the technical solutions bringing to thermal efficiency enhancement were adopted on HVs (Hybrid Vehicles) prior to conventional vehicles. In these days, these solutions are going to be adopted on conventional vehicles too. The purpose of this work was to trace development guidelines useful for engine designers, based on the target power and focused on the maximization of the engine thermal efficiency, following the engine rightsizing concept.
Journal Article

Relating Knocking Combustions Effects to Measurable Data

2015-09-06
2015-24-2429
Knocking combustions heavily influence the efficiency of Spark Ignition engines, limiting the compression ratio and sometimes preventing the use of Maximum Brake Torque (MBT) Spark Advance (SA). A detailed analysis of knocking events can help in improving the engine performance and diagnostic strategies. An effective way is to use advanced 3D Computational Fluid Dynamics (CFD) simulation for the analysis and prediction of the combustion process. The standard 3D CFD approach based on RANS (Reynolds Averaged Navier Stokes) equations allows the analysis of the average engine cycle. However, the knocking phenomenon is heavily affected by the Cycle to Cycle Variation (CCV): the effects of CCV on knocking combustions are then taken into account, maintaining a RANS CFD approach, while representing a complex running condition, where knock intensity changes from cycle to cycle.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Journal Article

A Control-Oriented Knock Intensity Estimator

2017-09-04
2017-24-0055
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming frequent in motorsport applications. On the other hand, cylinder pressure signals are often available in the calibration stage, where SA feedback-control based on the pressure signal can be used to avoid damages to the engine during automatic calibration. A predictive real-time combustion model could help optimizing engine performance, without exceeding the allowed knock severity.
Technical Paper

Multi-dimensional modeling of the air/fuel mixture formation process in a PFI engine for motorcycle applications

2009-09-13
2009-24-0015
The preparation of the air-fuel mixture represents one of the most critical tasks in the definition of a clean and efficient SI engine. Therefore it becomes necessary to consolidate the numerical methods which are able to describe such a complex physical process. Within this context, the authors developed a CFD methodology into an open-source code to investigate the air-fuel mixture formation process in PFI engines. Attention is focused on moving mesh algorithms, Lagrangian spray modeling and spray-wall interaction modeling. Since moving grids are involved and the mesh quality during motion strongly influences the computed in-cylinder flow-field, a FEM-based automatic mesh motion solver combined with topological changes was adopted to preserve the grid quality in presence of high boundary deformations like the interaction between the piston bowl and the valves during the valve-overlap period.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Technical Paper

Advanced Modelling of a New Diesel Fast Solenoid Injector and Comparison with Experiments

2004-03-08
2004-01-0019
Upcoming Euro 4 and Euro 5 emission standards are increasing efforts on injection system developments in order to improve mixture quality and combustion efficiency. The target features of advanced injection systems are related to their capability of operating multiple injection with a precise control of the amount of injected fuel, low cycle-by-cycle variability and life drift, within flexible strategies. In order to accomplish this task, injector performance must be optimised by acting on: optimisation of electronic, driving circuit, detailed investigation of different nozzle hole diameter configurations, assessment of the influence of manufacturing errors on hole diameter and inlet rounding on injector performance. The paper will focus on the use of an integrated lump-1D/3D methodology for the design of advanced new fast solenoid Common Rail (C.R.) injector for high speed diesel engines. A lump-model built up in AMESim® environment was used to address the injector design.
Technical Paper

On Non-Equilibrium Turbulence Corrections in Multidimensional HSDI Diesel Engine Computations

2001-03-05
2001-01-0997
The introduction of high-pressure injection systems in D.I. diesel engines has highlighted already known drawbacks of in-cylinder turbulence modeling. In particular, the well known equilibrium hypothesis is far from being valid even during the compression stroke and moreover during the spray injection and combustion processes when turbulence energy transfer between scales occurs under non-equilibrium conditions. The present paper focuses on modeling in-cylinder engine turbulent flows. Turbulence is accounted for by using the RNG k-ε model which is based on equilibrium turbulence assumptions. By using a modified version of the Kiva-3 code, different mathematically based corrections to the computed macro length scale are proposed in order to account for non-equilibrium effects. These new approaches are applied to a simulation of a recent generation HSDI Diesel engine at both full load and partial load conditions representative of the emission EUDC cycle.
Technical Paper

Numerical Analysis of Passenger Car HSDI Diesel Engines with the 2nd Generation of Common Rail Injection Systems: The Effect of Multiple Injections on Emissions

2001-03-05
2001-01-1068
A second generation of Common-Rail injection systems is coming into production making feasible multiple injection strategies. This paper aims to assess the capability of multiple injection in reducing NOx and soot emissions of HSDI Diesel engines. The analysis has been carried out at a characteristic point of the EUDC emission test cycle by using a customized version of the CFD code Kiva3, with updated sub-models developed by University of Bologna and University of Wisconsin. In particular, a recent modification has been introduced in the fuel conversion rate calculation in order to account for turbulence non-equilibrium effects. Different multiple injection profiles and combustion chamber configurations have been simulated and their effects on mixture formation, heat release rate and NOx and soot formation have been analyzed. The main target was to comply with emission standards without significant loss in engine performance.
Technical Paper

Numerical Study Towards Smoke-Less and NOx-Less HSDI Diesel Engine Combustion

2002-03-04
2002-01-1115
This paper explores the possibility to extend the low-temperature combustion concept developed for low load conditions to medium load conditions of HSDI DI Diesel engines. The aim is to understand which is the limit of conventional Diesel combustion towards smoke-lees and NOx-less conditions. The present research is based on numerical simulations performed by using the Kiva-3 code updated with physical sub-models. The combined influence of EGR cooling and EGR rate on combustion characteristics and emission formation is analyzed. Then, possible improvements to mixture formation are discussed with particularly emphasis on the use of multiple injection. The calculations show that smoke-less conditions by low-temperature combustion cannot be achieved at medium load and therefore a great role is played by mixture formation.
Technical Paper

A Chemical-Kinetic Approach to the Definition of the Laminar Flame Speed for the Simulation of the Combustion of Spark-Ignition Engines

2017-09-04
2017-24-0035
The laminar burning speed is an important intrinsic property of an air-fuel mixture determining key combustion characteristics such as turbulent flame propagation. It is a function of the mixture composition (mixture fraction and residual gas mass fraction) and of the thermodynamic conditions. Experimental measurements of Laminar Flame Speeds (LFS) are common in literature, but initial pressure and temperature are limited to low values due to the test conditions: typical pressure values for LFS detection are lower than 25 bar, and temperature rarely exceeds 550 K. Actual trends in spark ignition engines are to increase specific power output by downsizing and supercharging, thus the flame front involves even more higher pressure and temperature since the beginning of combustion.
Technical Paper

Parametric Analysis of the Effect of the Fluid Properties and the Mesh Setup by Using the Schnerr-Sauer Cavitation Model

2017-09-04
2017-24-0105
The primary target of the internal combustion engines design is to lower the fuel consumption and to enhance the combustion process quality, in order to reduce the raw emission levels without performances penalty. In this scenario the direct injection system plays a key role for both diesel and gasoline engines. The spray dynamic behaviour is crucial in defining the global and the local air index of the mixture, which in turns affects the combustion process development. At the same time it is widely recognized that the spray formation is influenced by numerous parameters, among which also the cavitation process inside every single hole of the injector nozzle. The proper prediction of the cavitation development inside the injector nozzle holes is crucial in predicting the liquid jet emerging from them.
Technical Paper

Superheated Sprays of Alternative Fuels for Direct Injection Engines

2012-04-16
2012-01-1261
Alternative and oxygenated fuels are nowadays being studied in order to increase engine efficiency and reduce exhaust emissions and also to limit the automotive industry's economical dependency from crude oil. These fuels are considered more ecological compared to hydrocarbons because they are obtained using renewable sources. Fuels like anhydrous/hydrous ethanol, methanol or alcohol/gasoline blends which are injected in liquid form must vaporize quickly, especially in direct injection engines, therefore their volatility is a very important factor and strongly depends on thermodynamic conditions and chemical properties. When a multi-component fuel blend is injected into a low pressure environment below its saturation pressure, a rapid boiling of the most volatile component triggers a thermodynamic atomization mechanism. These kinds of sprays show smaller droplets and lower penetration compared to mechanical break up.
Technical Paper

Multicycle Simulation of the Mixture Formation Process of a PFI Gasoline Engine

2012-06-01
2011-01-2463
The mixture composition heavily influences the combustion process of Port Fuel Injection (PFI) engines. The local mixture air-index at the spark plug is closely related to combustion instabilities and the cycle-by-cycle Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV) well correlates with the variability of the flame kernel development. The needs of reducing the engine emissions and consumption push the engine manufactures to implement techniques providing a better control of the mixture quality in terms of homogeneity and variability. Simulating the mixture formation of a PFI engine by means of CFD techniques is a critical issue, since involved phenomena are highly heterogeneous and a two phase flow must be considered. The aim of the paper is to present a multi-cycle methodology for the simulation of the injection and the mixture formation processes of high performance PFI engine, based on the validation of all the main physical sub-models involved.
Technical Paper

Primary Breakup Model for Turbulent Liquid Jet Based on Ligament Evolution

2012-04-16
2012-01-0460
The overall performance of direct injection (DI) engines is strictly correlated to the fuel liquid spray evolution into the cylinder volume. More in detail, spray behavior can drastically affect mixture formation, combustion efficiency, cycle to cycle engine variability, soot amount, and lubricant contamination. For this reason, in DI engine an accurate numerical reproduction of the spray behavior is mandatory. In order to improve the spray simulation accuracy, authors defined a new atomization model based on experimental evidences about ligament and droplet formations from a turbulent liquid jet surface. The proposed atomization approach was based on the assumption that the droplet stripping in a turbulent liquid jet is mainly linked to ligament formations. Reynolds-averaged Navier Stokes (RANS) simulation method was adopted for the continuum phase while the liquid discrete phase is managed by Lagrangian approach.
Technical Paper

A Numerical Methodology for the Multi-Objective Optimization of an Automotive DI Diesel Engine

2013-09-08
2013-24-0019
Nowadays, an automotive DI Diesel engine is demanded to provide an adequate power output together with limit-complying NOx and soot emissions so that the development of a specific combustion concept is the result of a trade-off between conflicting objectives. In other words, the development of a low-emission DI diesel combustion concept could be mathematically represented as a multi-objective optimization problem. In recent years, genetic algorithm and CFD simulations were successfully applied to this kind of problem. However, combining GA optimization with actual CFD-3D combustion simulations can be too onerous since a large number of simulations is usually required, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes.
Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

Assessment of the Influence of Intake Duct Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline Engine

2012-10-23
2012-32-0095
During the last years the deep re-examination of the engine design for lowering engine emissions involved two-wheel vehicles too. The IC engine overall efficiency plays a fundamental role in determining final raw emissions. From this point of view, the optimization of the in-cylinder flow organization is mandatory. In detail, in SI engines the generation of a coherent tumble vortex having dimensions comparable to the engine stroke could be of primary importance to extend the engines' ignition limits toward the field of the dilute/lean mixtures. For motorbike and motor scooter applications, the optimization of the tumble generation is considered an effective way to improve the combustion system efficiency and to lower emissions, considering also that the two-wheels layout represents an obstacle in adopting the advanced post-treatment concepts designed for automotive applications.
Technical Paper

Numerical Study of the Combustion Chamber Shape for Common Rail H.S.D.I. Diesel Engines

2000-03-06
2000-01-1179
The Common-rail injection system has allowed achieving a more flexible fuel injection control in DI-diesel engines by permitting a free mapping of the start of injection, injection pressure, rate of injection. All these benefits have been gained by installing this device in combustion chambers born to work with the conventional distributor and in-line-pump injection systems. Their design was aimed to improve air-fuel mixing and therefore they were characterized by the adoption of high-swirl ports and re-entrant bowls. Experiments have shown that the high injection velocities induced by common rail systems determine an enhancement of the air fuel mixing. By contrast, they cause a strong wall impingement too. The present paper aims to exploit a new configuration of the combustion chamber more suited to CR injection systems and characterized by low-swirl ports and larger bowl diameter in order to reduce the wall impingement.
X