Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Advanced Modeling of Common Rail Injector Dynamics and Comparison with Experiments

2003-03-03
2003-01-0006
The aim of this work is to set up a methodology for simulating Common Rail high-pressure injectors based on coupling a lump-model with CFD two-phase multi-dimensional computations. The unit simulated is the Bosch injector. The injector lump-model resulted in the definition of the three sub-models for hydraulics, mechanics and electro-magnetics. The second-order differential governing equations have been solved in Matlab/Simulink environment and are properly coupled together with the one-dimensional partial differential equations that describe the unsteady pipe flow. A detailed library of thermo-mechanical properties for ISO-4113 oil and diesel fuel is included. Cavitation effects on discharge coefficient in the main orifices were accounted for by using results from CFD steady two-phase flow simulations. The evaluation of the model capability was assessed by using detailed experiments carried out at different practical injector operating conditions.
Technical Paper

On the Applications of Low-Reynolds Cubic k-εTurbulence Models in 3D Simulations of ICE Intake Flows

2003-03-03
2003-01-0003
The evaluation of the steady-flow discharge coefficient of ICE port assemble is known to be very sensitive to the capability of the turbulence sub-models in capturing the boundary layer dynamics. Despite the fact that the intrinsically unsteady phenomena related to flow separation claim for LES approach, the present paper aims to demonstrate that RANS simulation can provide reliable design-oriented results by using low-Reynolds cubic k-ε turbulence models. Different engine intake port assemblies and pressure drops have been simulated by using the CFD STAR-CD code and numerical results have been compared versus experiments in terms of both global parameters, i.e. the discharge coefficient, and local parameters, by means of static pressure measurements along the intake port just upstream of the valve seat. Computations have been performed by comparing two turbulence models: Low-Reynolds cubic k-ε and High-Reynolds cubic k-ε.
X