Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Using LES for Predicting High Performance Car Airbox Flow

2009-04-20
2009-01-1151
Aerodynamic had played a primary role in high performance car since the late 1960s, when introduction of the first inverted wings appeared in some formulas. Race car aerodynamic optimisation is one of the most important reason behind the car performance. Moreover, for high performance car using naturally aspired engine, car aerodynamic has a strong influence also on engine performance by its influence on the engine airbox. To improve engine performance, a detailed fluid dynamic analysis of the car/airbox interaction is highly recommended. To design an airbox geometry, a wide range of aspects must be considered because its geometry influences both car chassis design and whole car aerodynamic efficiency. To study the unsteady fluid dynamic phenomena inside an airbox, numerical approach could be considered as the best way to reach a complete integration between chassis, car aerodynamic design, and airbox design.
Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Technical Paper

Racing Car Airbox Performance Prediction Using LES Simulation Approach

2008-10-06
2008-01-2388
This paper deals with the assessment of the use of LES simulation technique on a real airbox geometry designed for a high-performance engine. Large Eddy Simulation is a promising technique to yield a CFD tool able to predict flow unsteadiness: in LES modeling only a small part of the energy spectrum is modeled while the large scales of motion (correlated with the energy transport phenomena) are directly resolved. Given this observation, LES model becomes a very attractive tool for the fluid dynamic analysis of components characterized by a strong dynamic flow behavior like an airbox geometry. The airbox simulations were performed by Fluent v6.3 CFD code and the Wall Adaptive Local Eddy-Viscosity (WALE) sub-grid (sgs) stress model was used. A bounded second order central differencing scheme (BCD) was adopted and a discussion of the kinetic energy conservation attitude of this scheme was performed.
Technical Paper

Analysis of Air/Cavitation Interaction Inside a Rotary Vane Pump for Application on Heavy Duty Engine

2009-06-15
2009-01-1943
This paper deals with a CFD three-dimensional multiphase simulation of rotary vane pump. The paper presents a suitable methodology for the investigation of the cavitation effects and/or incondensable gases. All the 3D simulations were performed by using Fluent v12 (Beta version). A moving mesh methodology was defined to reproduce the change-in-time shape of the internal pump volumes. In particular, the pump analysis was focused on the generation, and evolution of the cavitation phenomena inside the machine to identify the locations where this phenomena could occur. Moreover, the influence of incondensable gas dissolved inside the operator fluid on both pump performance and cavitation evolution was evaluated. Significant results were obtained about the analysis of incondensable gas influence on the cavitation evolution showing that, today, CFD analysis can provide detailed information on such harmful phenomena which can not be achieved by experiments.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Technical Paper

Advanced Modeling of Common Rail Injector Dynamics and Comparison with Experiments

2003-03-03
2003-01-0006
The aim of this work is to set up a methodology for simulating Common Rail high-pressure injectors based on coupling a lump-model with CFD two-phase multi-dimensional computations. The unit simulated is the Bosch injector. The injector lump-model resulted in the definition of the three sub-models for hydraulics, mechanics and electro-magnetics. The second-order differential governing equations have been solved in Matlab/Simulink environment and are properly coupled together with the one-dimensional partial differential equations that describe the unsteady pipe flow. A detailed library of thermo-mechanical properties for ISO-4113 oil and diesel fuel is included. Cavitation effects on discharge coefficient in the main orifices were accounted for by using results from CFD steady two-phase flow simulations. The evaluation of the model capability was assessed by using detailed experiments carried out at different practical injector operating conditions.
Technical Paper

Primary Breakup Model for Turbulent Liquid Jet Based on Ligament Evolution

2012-04-16
2012-01-0460
The overall performance of direct injection (DI) engines is strictly correlated to the fuel liquid spray evolution into the cylinder volume. More in detail, spray behavior can drastically affect mixture formation, combustion efficiency, cycle to cycle engine variability, soot amount, and lubricant contamination. For this reason, in DI engine an accurate numerical reproduction of the spray behavior is mandatory. In order to improve the spray simulation accuracy, authors defined a new atomization model based on experimental evidences about ligament and droplet formations from a turbulent liquid jet surface. The proposed atomization approach was based on the assumption that the droplet stripping in a turbulent liquid jet is mainly linked to ligament formations. Reynolds-averaged Navier Stokes (RANS) simulation method was adopted for the continuum phase while the liquid discrete phase is managed by Lagrangian approach.
Technical Paper

On the Applications of Low-Reynolds Cubic k-εTurbulence Models in 3D Simulations of ICE Intake Flows

2003-03-03
2003-01-0003
The evaluation of the steady-flow discharge coefficient of ICE port assemble is known to be very sensitive to the capability of the turbulence sub-models in capturing the boundary layer dynamics. Despite the fact that the intrinsically unsteady phenomena related to flow separation claim for LES approach, the present paper aims to demonstrate that RANS simulation can provide reliable design-oriented results by using low-Reynolds cubic k-ε turbulence models. Different engine intake port assemblies and pressure drops have been simulated by using the CFD STAR-CD code and numerical results have been compared versus experiments in terms of both global parameters, i.e. the discharge coefficient, and local parameters, by means of static pressure measurements along the intake port just upstream of the valve seat. Computations have been performed by comparing two turbulence models: Low-Reynolds cubic k-ε and High-Reynolds cubic k-ε.
Technical Paper

Influence of Cylindrical, k, and ks Diesel Nozzle Shape on the Injector Internal Flow Field and on the Emerging Spray Characteristics

2014-04-01
2014-01-1428
Today, multi-hole Diesel injectors can be mainly characterized by three different nozzle hole shapes: cylindrical, k-hole, and ks-hole. The nozzle hole layout plays a direct influence on the injector internal flow field characteristics and, in particular, on the cavitation and turbulence evolution over the hole length. In turn, the changes on the injector internal flow correlated to the nozzle shape produce immediate effects on the emerging spray. In the present paper, the fluid dynamic performance of three different Diesel nozzle hole shapes are evaluated: cylindrical, k-hole, and ks-hole. The ks-hole geometry was experimentally characterized in order to find out its real internal shape. First, the three nozzle shapes were studied by a fully transient CFD multiphase simulation to understand their differences in the internal flow field evolutions. In detail, the attention was focused on the turbulence and cavitation levels at hole exit.
X