Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine

2004-06-08
2004-01-1918
In direct-injection gasoline (GDI) engines with charge stratification, minimizing engine-out nitrogen oxide (NOx) emission is crucial since exhaust-gas aftertreatment tolerates only limited amounts of NOx. Reduced NOx production directly lowers the frequency of energy-inefficient catalyst regeneration cycles. In this paper we investigate NO formation in a realistic GDI engine. Quantitative in-cylinder measurements of NO concentrations are carried out via laser-induced fluorescence imaging with excitation of NO (A-X(0,2) band at 248 nm), and subsequent fluorescence detection at 220-240 nm. Engine modifications were kept to a minimum in order to provide results that are representative of practical operating conditions. Optical access via a sapphire ring enabled identical engine geometry as a production line engine. The engine is operated with commercial gasoline (“Super-Plus”, RON 98).
Technical Paper

Toluene Laser-Induced Fluorescence (LIF) Under Engine-Related Pressures, Temperatures and Oxygen Mole Fractions

2005-05-11
2005-01-2091
Laser-induced fluorescence (LIF) is frequently used for the investigation of mixing processes in internal engine combustion. Toluene is one of the main fluorescing compounds of commercial gasoline. Understanding its fluorescence properties is therefore crucial for the correct interpretation of signal intensities observed under engine (i.e. high temperature and high pressure) conditions. Toluene LIF signal has been investigated as a function of temperature and oxygen concentration in order to enable quantitative fuel tracer imaging. Signal behavior and interpretation for engine-related conditions is demonstrated based on a semi-empirical fluorescence model. Toluene as well as gasoline-LIF is strongly quenched by oxygen. It has therefore been suggested for a direct measurement of fuel/air equivalence ratios.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

Investigation of the Mixing Process and the Fuel Mass Concentration Fields for a Gasoline Direct-Injection Spray at ECN Spray G Conditions and Variants

2015-09-01
2015-01-1902
Within the Engine Combustion Network (ECN) research frame, the mixing process and the fuel mass concentration fields were investigated at spray G conditions and variants with optical diagnostics. Experiments were conducted in a high-temperature high-pressure constant-volume pre-combustion vessel. The target condition, called “Spray G”, which is representative of gasoline direct-injection engine conditions, uses well-defined ambient (573 K, 6 bar, 3.5 kg/m3, O2-free) and injector conditions (200 bar, eight-hole injector, 0.165 mm orifice diameter). Measurements were also conducted at 6 and 9 kg/m3 for temperatures of 700 and 800 K respectively. Two techniques were used to visualize the jet formation: p-difluorobenzene laser induced fluorescence (LIF) imaging and high-repetition-rate schlieren visualization. Images from both methods were compared in terms of jet penetration and size.
X