Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Journal Article

Customer Focus in EPS Steering Feel Development

2014-04-01
2014-01-0148
The automotive industry is one of the most competitive enterprises in the world. Customers face an ever-expanding number of entries in each market segment vying for their business. Sales price, brand image, marketing, etc. all play a role in purchase decisions, but the factor distinguishing products that consistently perform in the market place is the ability to satisfy the customer. Steering character plays a critical role in the customer driving experience and can be one of the most heavily debated topics during a new vehicle program. The proliferation of EPS steering systems now allows engineers to calibrate steering feel to almost any desired specification. This raises a key question: What subjective & objective characteristics satisfy customers in a particular market segment?
Journal Article

Assessment of the Capability of EPS to Reduce Steering Wheel Pull and Vehicle Misalignment

2015-04-14
2015-01-1505
Vehicle steering wheel pull is a condition experienced by customers where a constant torque at the steering wheel is required to maintain a straight path. Steering wheel pull may be accompanied by the secondary effects of steering wheel angle misalignment and vehicle thrust angle “dog-tracking.” EPS pull compensation is a feature that can automatically compensate vehicle steering wheel pull. This paper examines customer benefits, operating principles, effectiveness, and robustness of EPS pull compensation in vehicles. Vehicle road test data indicate EPS can correct a severe vehicle steering wheel pull. Using fundamental physics equations, an analysis tool is derived to support further investigation of steering wheel angle misalignment and vehicle thrust angle. The final section presents a designed experiment revealing parameters most influencing vehicle robustness to chassis and road characteristics.
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
X