Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

An Experimental Study on High Pressure Pulsed Jets for DI Gas Engine Using Planar Laser-Induced Fluorescence

2012-09-10
2012-01-1655
Compressed natural gas direct-injection (CNG-DI) engines based on diesel cycle combustion system with pilot ignition have ability to achieve high thermal efficiency and low emissions. Generally, underexpanded jets can be formed when the high pressure natural gas is injected into the combustion chamber. In such conditions, shock wave phenomena are the typical behaviors of the jet, which can significantly influence the downstream flow structure and turbulent mixing. In the present study, the characteristics of high-pressure transient jets were investigated using planar laser-induced fluorescence (PLIF) of acetone as a fuel tracer. The evolution of the pulsed jet shows that there are three typical jet flow patterns (subsonic, moderately underexpanded, and highly underexpanded) during the injection. The full injection process of high-pressure pulsed jets is well described with the help of these shock wave structures.
X