Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Application of Synthetic Renewable Methanol to Power the Future Propulsion

2020-09-15
2020-01-2151
As CO2 emissions from traffic must be reduced and fossil-based traffic fuels need to phase out, bio-based traffic fuels alone cannot meet the future demand due to their restricted availability. Another way to support fossil phase-out is to include synthetic fuels that are produced from circular carbon sources with renewable energy. Several different fuel types have been proposed, while, methanol only requires little processing from raw materials and could be used directly or as a drop-in fuel for some of the current engine fleet. CO2 emissions arising from fuel production are significantly reduced for synthetic renewable methanol compared to the production of fossil gasoline. Methanol has numerous advantages over the currently used fossil fuels with high RON and flame speed in spark-ignition engines as well as high efficiency and low emissions in combustion ignition engines.
Journal Article

Dynamics of the Ammonia Spray Using High-Speed Schlieren Imaging

2022-03-08
2022-01-0053
Ammonia (NH3), as a carbon-free fuel, has a higher optimization potential to power internal combustion engines (ICEs) compared to hydrogen due to its relatively high energy density (7.1MJ/L), with an established transportation network and high flexibility. However, the NH3 is still far underdeveloped as fuel for ICE application because of its completely different chemical and physical properties compared with hydrocarbon fuels. Among all uncertainties, the dynamics of the NH3 spray at engine conditions is one of the most important factors that should be clarified for optimizing the fuel-air mixing. To characterize the evolution and evaporation process of NH3 spray, a high-speed Z-type schlieren imaging technique is employed to estimate the spray characteristics under different injection pressure and air densities in a constant volume chamber.
X