Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Application of Adaptive Kalman Filter for Estimation of Power Train Variables

2008-04-14
2008-01-0585
The paper presents the estimator design procedures for automotive power train systems based on the adaptive Kalman filter. The Kalman filter adaptation is based on a simple and robust algorithm that detects sudden changes of power train variables. The adaptive Kalman filter has been used to estimate the SI engine load torque and air mass flow, and also the tire traction force and road condition. The presented experimental results indicate that proposed estimators are characterized by favorable response speeds and good noise suppression abilities.
Technical Paper

Constrained Control of UAVs Using Adaptive Anti-windup Compensation and Reference Governors

2009-11-10
2009-01-3097
Gliders can climb to substantial altitudes without employing any on-board energy resources but using proper piloting skills to utilize rising air currents called thermals. Recent experiments on small Unmanned Aerial Vehicles (UAVs) indicate a significant potential to increase both the flight velocity and the range of gliders by means of such maneuvers. In these experiments the velocity to approach a thermal has been recognized as a critical performance factor, and is chosen as the controlled variable. Accurate longitudinal controllers are required to track the optimal flight trajectories generated using path planning algorithms. These controllers are challenged by the presence of uncertain and time-varying aircraft dynamics, gust disturbances, and control actuator limitations.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
X