Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Data Sources and Analysis of a Heavy Vehicle Event Data Recorder – V-MAC III

2009-04-20
2009-01-0881
Heavy trucks can have the capability to record vehicle status and performance data. In many applications, this capability is intrinsic to the powerplant’s electronic controls. However little information has been published regarding Heavy Vehicle Event Data Recorder (HVEDR) data obtained from Mack trucks equipped with the V-MAC vehicle electronic control units. This study is focused on data from Mack trucks and the influence of wheel slip on the HVEDR-reported vehicle speed. Additionally, the influence of variables such as initial speed and loaded condition are discussed. A late model Class 8 Mack was instrumented with a calibrated data acquisition package (DAQ) and put through a series of tests so that the HVEDR data could be compared to the data collected by the DAQ.
Technical Paper

Rear Override Impact Analysis of Full-Size and Light Duty Pickup Trucks for Crash Reconstruction

2017-03-28
2017-01-1423
The rear override crash behavior of full-size and light duty pickup trucks was examined. A series of ten full-scale, front and rear override impact crash tests were conducted involving four full-size pickup trucks, two light duty pickup trucks, and one sport utility vehicle (SUV). The tests were conducted utilizing a fabricated steel rigid barrier mounted on the front of the Massive Moving Barrier (MMB) test device with full overlap of the test vehicle. Crush ranged from 25.0 to 77.9 inches for impact speeds of 21.7 to 36.0 mph. These override tests on pickups were conducted to provide more basis in an area that is underrepresented in the literature. Each test was documented and measured prior to, and following, the crash test. The stiffness parameters were calculated and presented using constant stiffness, force saturation, and the power law damage models.
Journal Article

Modeling of Truck-Car Sideswipe Collisions Using Lug Patterns

2008-04-14
2008-01-0179
Vehicle to vehicle sideswipe collisions may involve contact between a vehicle body and a contacting vehicle's rotating wheels, tires and lug nuts. During a sideswipe collision between a truck and an automobile it is not uncommon to see lug marks in the shape of consecutive damage loops or strikes on the side of the impacted vehicle. The damage loops or strikes are generated by the protruding lug nuts of the truck wheel as it passes by the impacted vehicle at a shallow angle. Additionally, rubber transfers due to contact with the tire sidewall and metal scraping from the wheel rim also leave distinctive shapes on the sides of the contacted vehicle body. The tire, rim, lug nut markings and associated damage manifest themselves as a special case of the epitrochoid and can be geometrically and mathematically described. Presented is a derivation of the equations that govern the lug, rim and tire positions and relative motions.
Technical Paper

Testing of Heavy Truck Advanced Driver Assistance Systems and Crash Mitigation Systems

2023-04-11
2023-01-0010
Modern heavy vehicles may be equipped with an Advanced Driver Assistance System (ADAS) designed to increase highway safety. Depending on the vehicle or manufacturer, these systems may detect objects in a driver’s blind spot, provide an alert when the ADAS determines that the vehicle is leaving its lane of travel without the use of a turn signal, or notify the driver when certain road signs are detected. ADASs also include adaptive cruise control, which adjusts the vehicle’s set cruise speed to maintain a safe following distance when a slower vehicle is detected ahead of the truck. In addition, the ADAS may have a Collision Mitigation System (CMS) component that is designed to help drivers respond to roadway situations and reduce the severity of crashes. CMSs typically use radar or a combination of radar and optical technologies to detect objects such as vehicles or pedestrians in the vehicle’s path.
X