Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Comparison of Particulate Size Distributions from Advanced and Conventional Combustion - Part I: CDC, HCCI, and RCCI

2014-04-01
2014-01-1296
Comparison of particulate size distribution measurements from different combustion strategies was conducted with a four-stroke single-cylinder diesel engine. Measurements were performed at four different load-speed points with matched combustion phasing. Particle size distributions were measured using a scanning mobility particle sizer (SMPS). To study the influence of volatile particles, measurements were performed with and without a volatile particle remover (thermodenuder) at low and high dilution ratios. The use of a single testing platform enables quantitative comparison between combustion strategies since background sources of particulate are held constant. A large number of volatile particles were present under low dilution ratio sample conditions for most of the operating conditions. To avoid the impact of volatile particles, comparisons were made based on the high dilution ratio measurements with the thermodenuder.
Journal Article

Effects of Fuel Chemistry and Spray Properties on Particulate Size Distributions from Dual-Fuel Combustion Strategies

2017-03-28
2017-01-1005
The effect of direct-injected fuel on particle size distributions (PSDs) of particulate matter emitted from dual-fuel combustion strategies was investigated. The PSD data were acquired from a light-duty single-cylinder diesel engine operated using conventional diesel combustion (CDC) and two diesel/natural gas dual-fuel combustion strategies. Three different direct-injection (DI) fuels (diesel, 2,6,10-trimethyldodecane, and a primary reference fuel blend) and two different injector nozzles were studied. The DI fuels were chosen to have similar energy and ignition characteristics (heat of combustion and cetane number) but different physical and chemical properties (volatility, aromatics %, viscosity, density). The two nozzles (with different orifice diameter and spray angle) allowed a wide range in DI fuel quantity for the dual-fuel combustion strategies.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Journal Article

Effects of Fuel Physical Properties on Auto-Ignition Characteristics in a Heavy Duty Compression Ignition Engine

2015-04-14
2015-01-0952
The effect of fuel physical properties on the ignition and combustion characteristics of diesel fuels was investigated in a heavy-duty 2.52 L single-cylinder engine. Two binary component fuels, one comprised of farnesane (FAR) and 2,2,4,4,6,8,8-heptamethylnonane (HMN), and another comprised of primary reference fuels (PRF) for the octane rating scale (i.e. n-heptane and 2,2,4-trimethylpentane), were blended to match the cetane number (CN) of a 45 CN diesel fuel. The binary mixtures were used neat, and blended at 25, 50, and 75% by volume with the baseline diesel. Ignition delay (ID) for each blend was measured under identical operating conditions. A single injection was used, with injection timing varied from −12.5 to 2.5 CAD. Injection pressures of 50, 100, and 150 MPa were tested. Observed IDs were consistent with previous work done under similar conditions with diesel fuels. The shortest IDs were seen at injection timings of −7.5 CAD.
Technical Paper

Effects of Cetane Number on Jet Fuel Combustion in a Heavy-Duty Compression Ignition Engine at High Load

2011-04-12
2011-01-0335
The effects of jet fuel properties on compression ignition engine operation were investigated under high-load conditions for jet fuels with varying cetane number. A single-cylinder oil-test engine (SCOTE) with 2.44 L displacement was used to test a baseline #2 diesel fuel with a cetane number of 43, a Jet-A fuel with a cetane number of 47, and two mixtures of Jet-A and a Fishcer-Tropsch JP-8 with cetane numbers of 36 and 42, respectively. The engine was operated under high-load conditions corresponding to traditional diesel combustion, using a single injection of fuel near TDC. The fuels were tested using two different intake camshafts with closing times of -143 and -85 CAD BTDC. Injection timing sweeps were performed over a range of injection timings near TDC for each camshaft. The apparent net heat release rate (AHRR) data showed an increase in the premixed burn magnitude as cetane number decreased in agreement with previous work.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Journal Article

Establishing Thermal Stability in an Optically-Accessible CIDI Engine

2020-04-14
2020-01-0789
Optically-accessible engines are a key tool for the study of sprays, mixing, and ignition and combustion phenomena in internal combustion (IC) engines. Due to their construction, they are typically operated for limited durations, resulting in significant thermal transients in the in-cylinder surface temperatures and cycle-to-cycle in-cylinder gas temperature. This makes collection of highly repeatable data difficult and can introduce considerable uncertainty in the in-cylinder thermal conditions. In this paper, rigorous analyses of transient in-cylinder boundary conditions and in-cylinder gas temperature were performed in an optically-accessible compression-ignition engine. Piston surface thermometry, in-cylinder pressure measurements, and in-cylinder gas thermometry were employed to determine the engine warmup time required to reach a quasi-steady thermal state for motored operation over a range of intake air temperatures and pressures from 300-420 K and 100-300 kPa, respectively.
Journal Article

Ignition Sensitivity Analysis for Energy-Assisted Compression-Ignition Operation on Jet Fuels with Varying Cetane Number

2022-03-29
2022-01-0443
Local deposition of thermal energy can be used to assist the combustion process of low cetane number (CN) fuels in compression-ignition engines, here termed energy-assisted compression ignition (EACI). In the current work, a commercial ceramic glow plug, operated beyond its conventional operation range, was used as the ignition assistant (IA) and sensitivity of fuel jet ignition to operation parameters was studied for two fuels using EACI in an optical engine. A design-of-experiments (DoE) study was devised to determine which engine parameters influenced the energy-assisted pilot injection ignition process the most. The DoE was constructed with four parameters: injection pressure, injected mass, injection timing, and ignition assistant temperature. The fuels used were F24 (Jet-A with military additives) with a cetane number of 48 and a cetane number 35 fuel mixture consisting of 60% F24 and 40% of an alcohol-to-jet fuel (ATJ), blended on a volumetric basis.
Journal Article

Non-Intrusive Accelerometer-Based Sensing of Start-Of-Combustion in Compression-Ignition Engines

2023-04-11
2023-01-0292
A non-intrusive sensing technique to determine start of combustion for mixing-controlled compression-ignition engines was developed based on an accelerometer mounted to the engine block of a 4-cylinder automotive turbo-diesel engine. The sensing approach is based on a physics-based conceptual model for the signal generation process that relates engine block acceleration to the time derivative of heat release rate. The frequency content of the acceleration and pressure signals was analyzed using the magnitude-squared coherence, and a suitable filtering technique for the acceleration signal was selected based on the result. A method to determine start of combustion (SOC) from the acceleration measurements is presented and validated.
Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
X