Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

The Naturalistic Study of Distracted Driving: Moving from Research to Practice

2011-09-13
2011-01-2305
2011 - 56th L. Ray Buckendale Lecture Driver distraction has become an important topic in society and the research community. A telltale sign of how driver distraction has impacted society is evidenced by the designation of the term "distracted driving" as Webster's New World® College Dictionary 2009 Word of the Year. Since the release of a key study directed at commercial vehicle drivers, there have been two U.S. Department of Transportation summits to address the topic, in addition to legislation banning texting-while-driving in commercial motor vehicles. Given that "driver distraction" is a construct without a consensus definition, many studies on driver distraction have focused on its fundamental and theoretical underpinning, which is a critical first step in understanding the phenomenon.
Journal Article

Field Demonstration of Heavy Vehicle Camera/Video Imaging Systems

2011-09-13
2011-01-2245
To help drivers monitor the road and to reduce blind spots, Camera/Video Imaging Systems (C/VISs) display live video from cameras mounted on the truck's exterior to drivers using displays inside the truck cabin. This study investigated drivers' performance with C/VISs in a real-world trucking operation. Twelve commercial drivers' performance with and without a C/VIS was continuously recorded while they each drove for four months. Half of the drivers used a commercially available C/VIS that had a side-view camera on each fender. The other drivers used an advanced C/VIS (A-C/VIS) that had side-view cameras, a rear-view camera, and night-vision capabilities. This paper presents the study's final results and expands on the preliminary results that were previously reported. Detailed analyses of drivers' involvement in Safety-Critical Events (SCEs), their lane change performance, and their opinions of the C/VISs are presented.
Technical Paper

Development of a Performance Specification for Indirect Visibility Systems on Heavy Trucks

2007-10-30
2007-01-4231
Approximately 28,000 crashes involving combination unit trucks occur each year when they are making lane changes, merges, or turns. One contributing factor in these crashes is inadequate visibility for truck drivers. Recent advances in video technology have heightened the prospect of improving commercial vehicle safety by improving drivers' vision around the truck. For such video systems to be implemented on heavy trucks, the systems/driver interface should be demonstrated as viable through research. This paper presents the Camera/Video Imaging Systems (C/VISs) developed at Virginia Tech Transportation Institute (VTTI), the methodology used to test them, and some results obtained.
Technical Paper

PERCLOS+:Moving Beyond Single-Metric Drowsiness Monitors

2008-10-07
2008-01-2692
Assessing driver drowsiness and providing timely alerts is the basis for drowsy driver monitoring systems. Though technologies are available that claim to reliably provide this function, they tend to be single-metric systems that may not be sufficiently robust for real-world operation. To address this issue, a prototype system that integrated two drowsiness measures was developed. The prototype combined machine-vision-based drowsy driver monitoring technology and the analysis of driver/vehicle performance parameters with the goal of more reliably assessing driver drowsiness. The prototype concept, called PERCLOS+, used PERCLOS (a slow eye-closure measure) in combination with lane deviation (to assess driver performance). Based on preliminary on-road tests, the prototype was found to be more robust than a single-metric system.
Technical Paper

Methodological Approach for a Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles

2009-10-06
2009-01-2930
Camera/Video Imaging Systems (C/VISs) display video captured from cameras mounted on the truck's fenders and trailer to drivers using displays mounted inside the truck cabin. C/VISs provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration. They also support drivers in determining the clearance between the trailer and an adjacent vehicle when performing a lane change. The National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Association (FMCSA) have collaboratively funded research on the development of C/VISs that operate during the day, as well as enhancing C/VISs to operate at night and in inclement weather. This paper presents the work performed in developing a C/VIS capable of being used in an eight-month technology field demonstration (TFD), which will allow the measurement of driver behavior with the C/VIS in a revenue-producing environment.
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
Technical Paper

Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles - Driver Lane Change Performance Preliminary Results

2010-10-05
2010-01-2020
On-board Camera/Video Imaging Systems (C/VISs) for heavy vehicles display live images to the driver of selected areas to the sides, and in back of the truck's exterior using displays inside the truck cabin. They provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration, and to better judge the clearance between the trailer and an adjacent vehicle when changing lanes. The Virginia Tech Transportation Institute is currently investigating commercial motor vehicle (CMV) driver performance with C/VISs through a technology field demonstration sponsored by the National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Administration (FMCSA). Data collection, which consists of recording twelve CMV drivers performing their daily employment duties with and without a C/VIS for four months, is currently underway.
Technical Paper

Methodological Overview of the Drowsy Driver Warning System Field Operational Test

2004-10-26
2004-01-2718
To address the issue of fatigued truck drivers, the U.S. Department of Transportation sponsored research to develop a Drowsy Driver Warning System. This system has been under development for several years and is at a point where it is ready for a Field Operational Test. The experimental plan calls for 102 drivers, each operating one of 34 instrumented heavy trucks for 16 weeks. Each vehicle is instrumented with video cameras and a variety of sensors to capture driver input/performance. This paper describes the method being used to conduct the study, including an overview of the data collection instrumentation.
X