Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Interactive Approach to the Design of an Acoustically Balanced Vehicle Sound Package

2007-05-15
2007-01-2314
Each time a new vehicle is developed, engineers face the challenge to develop the ideal sound insulation package. The goal is to attenuate powertrain, wind and road/tire noise from entering the vehicle while complying with cost, weight and packaging constraints. The design process is greatly facilitated if the engineer has effective tools to rapidly quantify how various sound insulation components contribute to the overall NVH performance of the vehicle. This paper discusses how an interactive vehicle acoustical design tool can be developed that assists the designer in making rapid decisions as to how to balance the performance of the various sound package components. The acoustical design tool is unique for each vehicle, and must take into account design decisions such as type of powertrain, body style, and numerous other factors in order to correctly predict the performance of the total package.
Technical Paper

Application Study on a Flexible Rebound-Type Acoustic Metamaterial at Low Frequency

2017-06-05
2017-01-1880
A flexible rebound-type acoustic metamaterial with high sound transmission loss (STL) at low frequency is proposed, which is composed of a flexible, light-weight membrane material and a sheet material - Ethylene Vinyl Acetate Copolymer (EVA) with uneven distributed circular holes. STL was analyzed by using both computer aided engineering (CAE) calculations and experimental verifications, which depict good results in the consistency between each other. An obvious sound insulation peak exists in the low frequency band, and the STL peak mechanism is the rebound-effect of the membrane surface, which is proved through finite element analysis (FEA) under single frequency excitation. Then the variation of the STL peak is studied by changing the structure parameters and material parameters of the metamaterial, providing a method to design the metamaterial with high sound insulation in a specified frequency range.
Technical Paper

A New Strategy Optimization Method for Vehicle Active Noise Control Based on the Genetic Algorithm

2017-06-05
2017-01-1831
The control strategy design of vehicle active noise control (ANC) relies too much on experiment experience, which costs a lot to gather mass data and the experimental results lack representation. To solve these problems, a new control strategy optimization method based on the genetic algorithm is proposed. First, a vehicle cabin sound field simulation model is built by sound transfer function. Based on the filtered-X Least Mean Squares (FX-LMS) algorithm and the vehicle cabin sound field simulation model, a vehicle ANC simulation model is proposed and verified by a vehicle field test. Furthermore, the genetic algorithm is used as a strategy optimization tool to optimize an ANC control strategy parameter set based on the vehicle ANC simulation model. The optimized results provide a reference for the ANC control strategy design of the vehicle.
Technical Paper

Calculation of Acoustical Characteristics of the Sound Insulation Pad by Micro Perforated Membrane Theory

2013-05-13
2013-01-1940
PE (polyethylene) membranes are widely adopted in sound insulation pads inside vehicle. However, there are few studies on the acoustical effects of these inserted membranes. This study focuses on these effects. Frequently sound insulation is made up of two layers of felt (a pad made of cotton or synthetic fiber), separated by a PE membrane. The normal incidence sound absorption coefficient and sound transmission loss for this type of insulation construction were calculated through the micro perforated membrane theory and the analytical model (NOVA) which is based on Biot theory. Impedance tube measurement was used to derive the poroelastic properties needed to utilize these models. Comparison between the calculated and measured results showed that the absorption coefficient obtained from the micro perforated membrane theory was closer to the measured value above 3 kHz. And that calculated using NOVA was closer to the measured value below 3 kHz.
X