Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Investigative Study of Sudden Pressure Increase Phenomenon Across the DPF

2014-04-01
2014-01-1516
Diesel particulate filter (DPF) is a widely used emission control device on diesel vehicles. The DPF captures the particulate matter coming from the engine exhaust and periodically burns the collected soot via the regeneration process. There are various trigger mechanisms for this regeneration, such as distance, time, fuel and simulation. Another method widely used in the industry is the pressure drop across the filter. During calibration, relation between the pressure sensor reading and soot mass in the filter is established. This methodology is highly effective in successful DPF operation as pressure sensor is a live signal that can account for any changes in engine performance over time or any unforeseen hardware failures. On the other hand, any erroneous feedback from the sensor can lead to inaccurate soot mass prediction causing unnecessary regenerations or even needless DPF plugging concerns.
Technical Paper

Optimization of Diesel Oxidation Catalyst (DOC) on Passenger Cars to Improve Emission Robustness

2015-04-14
2015-01-1013
Emission compliance at the production level has been a challenge for vehicle manufacturers. Diesel oxidation catalyst (DOC) plays a very important role in controlling the emissions for the diesel vehicles. Vehicle manufacturers tend to ‘over design’ the diesel oxidation catalyst to ‘absorb’ the production variations which seems an easier and faster solution. However this approach increases the DOC cost phenomenally which impacts the overall vehicle cost. The main objective of this paper is to address the high variation in CO tail pipe emissions which were observed on a diesel passenger car during development. This variation was posing a challenge in consistently meeting the internal product requirement/specification.
X