Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

New Vibration Control Methodology in Engine Mount System for Low-Fuel Consumption Engines

2013-04-08
2013-01-1703
With growing demands for better fuel economy and reduced carbon emissions there is a need for smaller and more fuel efficient engines. At the same time, to improve passenger comfort there are also demands placed on improved vehicle quietness [1]. A Homogeneous Charge Compression Ignition (HCCI) system or a higher compression ratio system can be used to obtain better fuel economy but the enhanced combustion rate causes an increase in engine vibration in the medium to high frequency range [2, 3]. To ensure vehicle quietness, this issue of structure-borne noise that is transmitted from the engine mounts to the body must be addressed. In this paper a simple anti-vibration active mount system is introduced that can significantly reduce structure-borne noise at medium to high frequencies. This is achieved by adding mass to the insulator which leads to resonance at lower frequencies, in order to obtain double anti-vibration performance.
Technical Paper

NVH Development of a High Torque SUV Using a Novel Active Torque Rod System

2018-04-03
2018-01-0685
During the last decade, fuel economy mandates (CAFE regulations) have driven engine downsizing and down-speeding trends. More recently, downsized turbos are percolating down to heavier SUVs and trucks. Larger/heavier vehicles require high torque engines to provide attractive dynamic performance. While higher torque requirements can be satisfied with new innovations like the variable compression engine, larger and more upscale vehicles also need to deliver higher quietness requirements. For this, the vibration control system for combustion induced forces with high torque engines become very important. To address both dynamic performance and quietness requirements, active engine mounts have been previously adopted, however challenges for light-weighting, downsizing, and costs have still persisted.
X