Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Simulation of High Efficiency Heavy Duty SI Engines Using Direct Injection of Alcohol for Knock Avoidance

2008-10-06
2008-01-2447
The use of direct injection (DI) of a second fuel, ethanol or methanol (or their concentrated blends), is explored, via simulation, as a means of avoiding knock in turbocharged, high compression ratio spark-ignited engines that could replace diesels in certain vocational applications. The Ethanol Turbo Boost ™ concept uses the second fuel only under conditions of high torque to avoid knock, while using only conventional gasoline throughout the rest of the engine operating range. This approach is an attractive alternative for heavy duty vehicles that operate intermittently at high torque and within a confined locale, reducing the logistical issues of supplying the knock-suppressing fuel. The combination of GT-Power for engine calculations and a sophisticated chemical kinetics code for predicting knock were used in the study.
Technical Paper

Optimized PFI+DI Operation For Minimizing DI Gasoline Engine Particulates

2018-04-03
2018-01-1415
Direct Injection (DI) fueled gasoline engines provide higher efficiency than port fueled injected (PFI) engines. However, emission of small particulates is greatly increased when DI is used. Particulate mass emission is increased by more than a factor of 10 and particulate number is increased by a factor of 10-100 relative to PFI engines leading to health concerns and to implementation and consideration of new regulations. Optimized combinations of PFI and DI can greatly reduce DI-generated particulate emissions without compromising efficiency and performance. A DI enhanced PFI mode of engine operation is employed where PFI is the dominant means in dual-injection fueling over a drive cycle, and the fuel fraction that is directly injected is reduced/minimized while still preventing knock at high loads. Further reduction can be obtained by optimal use of spark retard.
X