Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Directstart: Investigation of Mixture Formation by Means of Optical Measurements and 3D-CFD-Simulation

2005-10-24
2005-01-3686
This paper focuses onto mixture formation issues of the Directstart of a gasoline direct injection engine. Regarding the starterless Directstart, i.e. an engine start through targeted injection and ignition timing without the help of an electrical starter, engine tests show that there exists a large room for improvements by attending the mixture formation of the first combustion. The conditions for the first combustion are very unusual: ambient pressure, nearly the same fuel, engine and charge temperature, no piston movement and only spray induced turbulence. Furthermore, engine tests show that the mixture formation changes with the engine temperature. This paper analyzes the mixture formation of the first combustion for different engine conditions by means of engine measurements and both optical measurements in a spray chamber and simulations performed by the fast response 3D-CFD-Tool QuickSim of IVK/FKFS.
Technical Paper

GDI Swirl Injector Spray Simulation:A Combined Phenomenological-CFD Approach

2004-10-25
2004-01-3005
In this work the formation and the evolution of the fuel spray emerging from a hollow-cone swirl injector were investigated. The first aim of the work was to set up a tool for fuel spray simulation in a CFD analysis that can offer a reasonable accuracy with no significant increment in the computational time. The analysis started from a theoretical formulation of the fuel flow inside the injector, based on the potential theory, obtaining an injector model which allows the calculation of the main spray characteristics usually required by the CFD analysis (i.e. droplet velocity, fuel film thickness, droplet size distribution). These parameters can be obtained only from spray cone angle and mass flow rate, which are the data commonly provided by injector manufacturers. Furthermore, a phenomenological approach was also presented, in order to properly simulate in CFD analysis the spray tip penetration in the dense spray zone, without requiring an increase of the spatial grid resolution.
X