Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Simulative Study for Post Oxidation During Scavenging on Turbo Charged SI Engines

2018-04-03
2018-01-0853
Fulfilling exhaust emissions regulations and meet customer performance needs mainly drive the current engine development. Turbocharging system plays a key role for that. Currently turbocharging should provide highest engine power density at high engine speed by also allowing a very responsive performance at low end. This represents a trade-off in turbocharger development. A large scaled turbine allows having moderate exhaust gas back pressure for peak power region, but leading to loss of torque in low engine speed. In the last years of engine development scavenging helped to get away a bit from this trade-off as it increases the turbine mass flow and also reduces cylinder internal residual gas at low engine speed. The mostly in-use lean strategy runs air fuel ratios of closed to stoichiometric mixture in cylinder and global (pre catalyst) of λ = 1.05 to l = 1.3. This will be out of the narrow air fuel ratio band of λ = 1 to ensure NOx conversion in the 3-way-catalyst.
Technical Paper

The Influence of eFuel Formulation on Post Oxidation and Cold Start Emissions

2021-04-06
2021-01-0632
The goal of reducing the impact of road transportation on the environment can be reached by different approaches. The use of non-fossil synthetic fuels from renewable energy sources in the entire fleet of internal combustion engine vehicles is only one promising pathway to minimize the vehicle’s carbon footprint during the use phase. The steadily tightening emissions legislation confront the developers of future combustion engines with major challenges: Historically, the chemical and physical improvement of the combustion process, tail pipe emissions reduction and the development of optimized after-treatment systems were linked to improvements in fuel quality. In order to further decrease exhaust gas emissions, the optimization of the chemical composition of renewable fuels are a basic requirement.
Technical Paper

Investigation and 1D Modelling Approach on Scavenging Air Post-Oxidation inside the Exhaust Manifold of a DISI Engine

2021-04-06
2021-01-0599
The introduction of real driving emission measurements increases the need of improved transient engine behavior while keeping the emissions to a minimum. A possible way of enhancing the transient engine behavior is the targeted usage of scavenging. Scavenging is realized by an inlet- and exhaust-valve overlap. Fresh scavenging air flows directly from intake manifold through the cylinder into the exhaust manifold. Therefore, the mass flow at the turbine increases and causes a reduced turbo lag, which results in a more dynamic engine behavior. The unburned oxygen causes a decrease of the three-way catalyst (TWC) conversion rate. To keep the TWC operation close to stoichiometry, a rich combustion is performed. The rich combustion products (most notably carbon monoxide) mix in the exhaust manifold and react with oxygen so that the conversion rate of the TWC is ensured.
X