Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Characterization of Vehicle Occupant Compartment Material Properties Using MADYMO: Methodology and Validation

2009-06-09
2009-01-2260
During a motor-vehicle collision, an occupant may interact with a variety of interior structures. The material properties and construction of these structures can directly affect the occupant's kinetic response. Simulation tools such as MADYMO (Mathematical Dynamical Models) can be used to estimate the forces imparted to an occupant for injury mechanism and causation evaluation relative to a particular event. Depending on the impact event and the specific injury mechanism being evaluated, the selection of proper material characteristics can be quite important. A comprehensive literature review of MADYMO studies illustrates the prevalent use of generic material characteristics and the need for improved property estimation and implementation methods.
Technical Paper

Interaction of the Hand and Wrist with a Door Handgrip During Static Side Air Bag Deployment: Simulation Study Using the CVS/ATB Multi-Body Program

2001-03-05
2001-01-0170
This paper presents a parametric study that utilized the CVS/ATB multi-body simulation program to investigate the interaction of the hand and wrist with a door handgrip during side air bag loading. The goal was to quantify the relative severity of various hand and handgrip positions as a guide in the selection of a test matrix for laboratory testing. The air bag was represented as a multi-body system of ellipsoidal surfaces that were created to simulate a prototype seat-mounted thorax side air bag. All simulations were set in a similar static test environment as used in corresponding dummy and cadaver side air bag testing. The occupant mass and geometric properties were based on a 5th percentile female occupant in order to represent a high-risk segment of the adult population. The upper extremity model consisted of wrist and forearm rotations that were based on human volunteer data.
Technical Paper

Testing and Modeling of Elevator Door Retention During Hallway Applied Lateral Loads

2009-06-09
2009-01-2273
Most do not consider there to be a risk in pushing on, bumping into or falling against an elevator door from the hallway side. However, the lack of the elevator cars presence alone, and the potential for severe injury or even death make this seemingly mundane situation potentially critical. Standards exist relative to such situations, and past and current designs attempt to account for this possibility, still people get injured interacting with these doors every year. In order to evaluate a real-world elevator door system's ability to withstand the quasi-static and impactive loads that can be placed on it by the general public during its life, both intentionally and unintentionally, a predictive tool is needed. This work represents the combination of empirical laboratory testing and numerical modeling of a typical elevator door system exposed to quasi-static and dynamic loading.
X