Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of Ash Accumulation in the After-treatment System of a Gasoline Direct Injection Engine Equipped with a Gasoline Particulate Filter

2017-03-28
2017-01-0879
In order to meet the EU6c, 6×1011 # / km particulate number emission target that will be introduced in 2017, some gasoline direct injection (GDI) engines might require the use of particulate filters (GPF). The lifetime of wall-flow filters is influenced by the composition of the engine lubricant due to the potential of the lubricant to contribute to ash accumulation in the GPF. In order to anticipate the potential need for new, lower ash lubricants, an endurance test was performed using a commercially available GPF. A radio-labelling method was used to identify the amount of lubricant derived ash trapped in the GPF in addition to conventional weighing measurements. After the endurance test, during which 9 kg of 1.17% sulphated ash oil was consumed, approximately 50 g of ash had accumulated in the GPF. This amount is only 48% of the expected amount based on fresh oil sulphated ash concentration and oil consumption.
Technical Paper

An Innovative On-Line Measurement Method for Studying the Impact of Lubricant Formulations on Poisoning and Clogging of After-Treatment Devices

2005-05-11
2005-01-2178
The lifetime of the new technologies of after-treatment devices is influenced by the composition of engine oil, making it necessary to study the compatibility of lubricants with these devices. These compatibility tests usually evaluate parameters such as the long-term performance of after-treatment systems, the quantity and nature of accumulated residues due to the lubricant used, back-pressure increase, etc. This paper presents a novel, non-destructive radionuclide technique based on labeling the different elements in the engine oil (e.g. zinc and calcium), that provides additional information to after-treatment system compatibility tests: on-line measurement in the after-treatment device of the accumulation of elements from oil additives, and visualization of their distribution inside the device (inlet/outlet). Most of the work presented here focuses on the accumulation of zinc and calcium from the lubricant in a Diesel Particulate Filter (DPF).
Journal Article

Contribution of Lubricant Additives to Ash Generation on a Close-Coupled GPF

2020-09-15
2020-01-2162
In order to meet the particulate emission targets (6 x 1011 #/km), some gasoline direct injection (GDI) engines might require the use of particulate filters (GPF). The lifetime of wall-flow filters is influenced by the composition of the engine lubricant due to its potential to contribute to the ash accumulation in the GPF. Due to space constraints and to facilitate trapping and soot regeneration, a large number of GPFs will be in closed-coupled configuration. A study was carried out on an endurance test with a radio labelling method and conventional mass gain measurement to evaluate this GPF configuration, and verify the impact of metallic additives contained in the lubricant such as magnesium (Mg) and calcium (Ca) based detergent, a zinc (Zn) based anti-wear, and a molybdenum (Mo) based friction modifier. Two oils were evaluated, with two levels (0.85%-1.1%) of SAPS (Sulphated Ash, Phosphorus and Sulphur).
X