Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Investigation of a New Injection Strategy for Simultaneous Soot and NOx Reduction in a Diesel Engine with Direct Injection

2008-06-23
2008-01-1790
An important source for soot formation during the combustion of diesel engines with direct injection is the interaction of liquid fuel or a very rich air/fuel-mixture with the flame. This effect appears especially in modern direct injection engines where the injection is often split in a pre- and a main injection due to noise reasons. After the ignition of the pre-injected fuel a part of the main injection can interact with the flame still in liquid phase as the fuel is injected straight towards the already burning cylinder areas. This leads to high amounts of soot. The injection strategy for this experimental study overcomes this problem by separating the injections spatially and therefore on the one hand reduces the soot formation during the early stages of the combustion and on the other hand increases the soot oxidation later during the combustion. In particular an injection configuration is used which gives the degree of freedom to modify the injection in the described manner.
Journal Article

Soot and NOx Reduction by Spatially Separated Pilot Injection

2012-04-16
2012-01-1159
To this day, Diesel engines with direct injection are the most efficient internal combustion engines for passenger cars. The major challenge of these engines with a conventional Diesel combustion process is the high level of particulate matter and nitrogen oxide emissions. Diesel engines in passenger cars normally use a pilot injection strategy for NVH reasons, which influences the engine-out soot emissions negatively. The Diesel fuel of the pilot injection is still burning when the main injection takes place, so, liquid components of the main injection interact with the flame of the pilot injection. The time for mixture formation decreases and the combustion takes place under locally very rich conditions which results in high levels of soot formation. For this reason new emission level restrictions cannot be reached without modern exhaust gas aftertreatment systems, which are quite expensive and can have an impact on the gas exchange.
Technical Paper

Ion Current Measurement in Diesel Engines

2004-10-25
2004-01-2922
Contemporary diesel engines are high-tech power plants that provide high torques at very good levels of efficiency. By means of modern injecting-systems such as Common-Rail Injection, combustion noise and emissions could be influenced positively as well. Diesel engine are therefore used increasingly in top-range and sports cars. Today's production ECUs have no or only very low feedback regarding the process in the combustion chamber. As long as this data is missing, the design of the maps in the ECU can only be a compromise, since production tolerances and aging processes have to be considered in advance. Disturbances in the combustion process may not be detected at all. If more knowledge about the course of combustion is provided, especially the start of combustion (SOC), various operating parameters, such as the pilot injection quantity or the beginning of current feed to the injector, could be adjusted more precisely and individually for every cylinder.
Technical Paper

Particulate Trap Technology for Light Duty Vehicles with a New Regeneration Strategy

2000-06-19
2000-01-1924
A particulate trap with combined regeneration has been developed for use in light duty vehicles with diesel engines. This new system was tested first on an engine test rig. On-road vehicle tests are going on since August 1998. The results obtained clearly demonstrate the feasibility of this system. With this system trap regeneration has to be ensured under worst case conditions (exhaust gas temperature<400° C). To meet this requirement electrical heating in combination with a fuel-borne catalyst is applied. Different filter materials such as cordierite wall flow and silicon carbide monoliths were tested on the engine test rig. The paper reports on results from the engine test rig as well as from on-road vehicle testing. An overview about pre-heating and regeneration examples are given and energy balances are presented.
X