Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Investigations on the Heat Transfer in HCCI Gasoline Engines

2009-06-15
2009-01-1804
In this work, heat loss was investigated in two different HCCI single cylinder engines. Thermocouples were adapted to the surfaces of the cylinder heads and the temperature oscillations were detected in a wide range of the engine operation conditions. The local heat transfer is analyzed with port fuel and direct injection, for different engine parameters and operating points. It is shown that the spatially averaged measured heat loss in HCCI operation represents the global heat loss well. The spatial variations are small in the operation map presuming stable operating points with low cyclic variations and good engine performance. Furthermore, the heat loss measured in HCCI operation is compared to the heat loss detected in homogeneous and stratified DI-SI operation in the same engine. It is shown that the local heat losses in stratified DI-SI operation show large variations, depending on the direction of the flame propagation.
Journal Article

Investigations on the Heat Transfer in a Single Cylinder Research SI Engine with Gasoline Direct Injection

2015-04-14
2015-01-0782
In this work, heat loss was investigated in homogeneous and stratified DI-SI operation mode in a single cylinder research engine. Several thermocouples were adapted to the combustion chamber surfaces. The crank angle resolved temperature oscillations at the cylinder head and piston surface could thereby be measured in homogeneous and stratified operation mode. A grasshopper linkage was designed and adapted to the engine, to transfer the piston signals to the data acquisition device. The design of the experimental apparatus is described briefly. For both operation modes the average steady-state temperatures of the combustion chamber surfaces were compared. The temperature distribution along the individual sensor positions at the cylinder head and piston surface are shown. Furthermore, the curves of the crank angle resolved temperature oscillations in stratified and homogeneous operation mode were compared.
Journal Article

A New Model to Describe the Heat Transfer in HCCI Gasoline Engines

2009-04-20
2009-01-0129
In this work, heat loss was investigated in two different HCCI single cylinder engines. Thermocouples were adapted to the surfaces of the cylinder heads and the temperature oscillations were detected in a wide range of the engine operation maps. The resultant heat transfer profiles were compared to the heat losses predicted by existing models. As major discrepancies were stated, a new phenomenological model was developed that is well-manageable and describes the heat loss in HCCI mode more precisely than existing models. To analyze the insulating effect of deposits, the heat transfer equation was solved analytically by an approach that allows consideration of multiple layers with different material properties and thickness. This approach was used for the first time in conjunction with engines to calculate the heat flux at the surface of deposits and the deposit thickness.
X