Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Emission Measurements of the AI-14RA Aviation Engine in stationary test and under Real Operating Conditions of PZL-104 ‘Wilga’ Plane

2010-05-05
2010-01-1563
Due to a rapid development of air transportation there is a need for the assessment of real environmental risk related to the aircraft operation. The emission of carbon monoxide and particulate matter is still a serious threat~constituting an obstacle in the development of combustion engines. The applicable regulations related to the influence of the air transportation on the environment introduced by EPA (Environmental Protection Agency), ICAO (International Civil Aviation Organization) contained in JAR 34 (JAA, Joint Aviation Requirements, JAR 34, Aircraft Engine Emissions), FAR 34 (FAA, Federal Aviation Regulations, Part 34, Fuel Venting and Exhaust Emission Requirements for Turbine Engine Powered Airplanes), mostly pertain to the emission of noise and exhaust gas compounds, NOx in particular. They refer to jet engines and have stationary test procedures depending on the engine operating conditions.
Technical Paper

RDE-Compliant PEMS Testing of a Gasoline Euro 6d-TEMP Passenger Car at Two Ambient Temperatures with a Focus on the Cold Start Effect

2020-04-14
2020-01-0379
European Union RDE (real driving emissions) legislation requires that new vehicles be subjected to emissions tests on public roads. Performing emissions testing outside a laboratory setting immediately raises the question of the impact of ambient conditions - especially temperature - on the results. In the spirit of RDE legislation, a wide range of ambient temperatures are permissible, with mathematical moderation (correction) of the results only permissible for ambient temperatures <0°C and >+30°C. Within the standard range of temperatures (0°C to +30°C), no correction for temperature is applied to emissions results and the applicable emissions limits have to be met. Given the well-known link between the thermal state of an engine and its emissions following cold start, ambient temperature can be of great importance in determining whether a vehicle meets emissions requirements during an RDE test.
Technical Paper

Comparative Studies of Exhaust Emissions from Three City Buses in Real Traffic Conditions, One with LNG, the Other with CI Engine and a Hybrid Bus

2020-09-15
2020-01-2191
There is a growing appreciation for using buses powered by alternative fuels in urban transport. Considered as such are city bus with engines fuelled with LNG and hybrid bus. This article, as shown above, provides a comparison of road exhaust emissions from three city buses: one with a CI engine fuelled with diesel fuel, and the other with a SI engine fuelled with LNG and Hybrid bus. Both vehicles (CI and LNG) conformed to Euro VI emission standard (hybrid bus EEV), and the tests were carried out in real traffic conditions. Equivocal opinions about differences in emissions from those types of buses, among others - CO2 and NOx emissions, were the underlying cause of the tests. The comparative study was carried out along the same urban routes during bus trips over the following days in similar traffic conditions. Exhaust road emission was determined based on the vehicle's curb weight and route length, and operating fuel consumption.
Technical Paper

Gaseous and PM Emission from Combat Vehicle Engines during Start and Warm-Up

2010-10-25
2010-01-2283
The paper presents the results of the investigations of an armored modular vehicle 8x8 Rosomak fitted with a diesel engine during start and warm-up. For the measurements of the toxic compounds a portable SEMTECH DS analyzer by SENSORS was used. The analyzer allowed a measurement of exhaust emission at the same time measuring the mass flow rate of the exhaust gases. The analysis of the PM emission was performed based on the measurement of the size of the particulate matter (analyzer 3090 EEPS - Engine Exhaust Particle Sizer™ Spectrometer - by TSI Incorporated) and counting of the particles (analyzer Particle Counter by AVL). The measurements of CO, HC, NOx, PM and fuel consumption have also been carried out under static conditions, during startup and at constant engine speed without engine load. For the measurement of the engine operating conditions and the fuel consumption a diagnostic vehicle system was used.
Technical Paper

Exhaust Emission Tests from Agricultural Machinery under Real Operating Conditions

2010-10-05
2010-01-1949
The tests related to the exhaust emissions from non-road vehicles are currently performed on a chassis dynamometer under the name of NRSC (ISO 8178) and NRTC. In light of the growing requirements related to the environment protection in transport the authors recommend determining the exhaust emissions through real vehicle operating conditions. The tests carried out under real operating conditions could be used for the process of optimization of future power trains of regular road vehicles and non-road vehicles. What is more, these tests should be taken into account in the works on the changes of the legislation related to the emission limits from combustion engines. The paper presents the results of the tests on the exhaust emissions from an agricultural harvester engine and a tractor engine in real operating conditions. The harvester operation during the test consisted in crops collection from the field and the tractor operation during the test consisted in plowing.
Technical Paper

Investigation of Exhaust Emissions from DI Diesel Engine During Cold and Warm Start

2001-03-05
2001-01-1260
This paper reviews the emissions from direct injection (DI) diesel engine in the initial period of controlled engine operation following start-up. The tests were undertaken in „cold start” mode (temperature of cooling water and lube oil equal to ambient temperature) and „warm start” mode* (after attaining a state of equilibrium). Both results were compared.
Technical Paper

A Method of Reducing the Exhaust Emissions from DI Diesel Engines by the Introduction of a Fuel Cut Off System During Cold Start

2001-10-01
2001-01-3283
This paper reviews the exhaust emissions from direct injection (DI) diesel engines in the initial period following start-up. The tests were undertake in “cold start” mode (the temperature of the cooling water and lube oil being equal to the ambient temperature) and “warm start” modes (after achieving a state of equilibrium). The results from both states are compared. Exhaust emissions in the period from cold start is very important and must be improved in order to satisfy present day standards worldwide. A significant emission decrease during cold start can be achieved by incorporating selective fuel cut-off during the few seconds directly after beginning of engine crank. Compared to the acceptable gaseous pollutant concentrations, it was observed that an almost 50% reduction in hydrocarbon emission and a 30% reduction in carbon monoxide emissions were obtained (3 minutes of idle run).
Technical Paper

A Comparison of Gaseous Emissions from a Hybrid Vehicle and a Non-Hybrid Vehicle under Real Driving Conditions

2018-04-03
2018-01-1272
In this study, two vehicles were tested under real driving conditions with gaseous exhaust emissions measured using a portable emissions measurement system (PEMS). One of the vehicles featured a hybrid powertrain with a spark ignition internal combustion engine, while the other vehicle featured a non-hybrid (conventional) spark ignition internal combustion engine. Aside from differences in the powertrain, the two test vehicles were of very similar size, weight and aerodynamic profile, meaning that the power demand for a given driving trace was very similar for both vehicles. The test route covered urban conditions (but did include driving on a road with speed limit 90 km/h). The approximate test route distance was 12 km and the average speed was very close to 40 km/h.
Technical Paper

RDE Testing of Passenger Cars: The Effect of the Cold Start on the Emissions Results

2019-04-02
2019-01-0747
This paper discusses the importance of the inclusion of emissions from the cold start event during legislative on-road tests on passenger cars (RDE - real driving emissions tests conducted under real-world driving conditions, as defined by EU legislation). Results from a recently-registered gasoline-powered vehicle are presented, with the main focus on the comparison of exhaust emission results: excluding/including the cold start during the initial phase of the RDE test. Cold start is the most challenging aspect of emissions control for vehicles with spark ignition engines and the inclusion of the cold start event in RDE test procedure has wide-ranging implications both for the testing process and compliance with RDE legislation via optimisation of aftertreatment systems and the engine calibration. In addition to some theoretical arguments, the results of an RDE-compliant test performed using the aforementioned procedures are presented.
X