Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Emission Measurements of the AI-14RA Aviation Engine in stationary test and under Real Operating Conditions of PZL-104 ‘Wilga’ Plane

2010-05-05
2010-01-1563
Due to a rapid development of air transportation there is a need for the assessment of real environmental risk related to the aircraft operation. The emission of carbon monoxide and particulate matter is still a serious threat~constituting an obstacle in the development of combustion engines. The applicable regulations related to the influence of the air transportation on the environment introduced by EPA (Environmental Protection Agency), ICAO (International Civil Aviation Organization) contained in JAR 34 (JAA, Joint Aviation Requirements, JAR 34, Aircraft Engine Emissions), FAR 34 (FAA, Federal Aviation Regulations, Part 34, Fuel Venting and Exhaust Emission Requirements for Turbine Engine Powered Airplanes), mostly pertain to the emission of noise and exhaust gas compounds, NOx in particular. They refer to jet engines and have stationary test procedures depending on the engine operating conditions.
Technical Paper

RDE-Compliant PEMS Testing of a Gasoline Euro 6d-TEMP Passenger Car at Two Ambient Temperatures with a Focus on the Cold Start Effect

2020-04-14
2020-01-0379
European Union RDE (real driving emissions) legislation requires that new vehicles be subjected to emissions tests on public roads. Performing emissions testing outside a laboratory setting immediately raises the question of the impact of ambient conditions - especially temperature - on the results. In the spirit of RDE legislation, a wide range of ambient temperatures are permissible, with mathematical moderation (correction) of the results only permissible for ambient temperatures <0°C and >+30°C. Within the standard range of temperatures (0°C to +30°C), no correction for temperature is applied to emissions results and the applicable emissions limits have to be met. Given the well-known link between the thermal state of an engine and its emissions following cold start, ambient temperature can be of great importance in determining whether a vehicle meets emissions requirements during an RDE test.
Technical Paper

A Comparison of Tailpipe Gaseous Emissions from the RDE and WLTP Test Procedures on a Hybrid Passenger Car

2020-09-15
2020-01-2217
Non-plugin hybrids represent a technology with the capability to significantly reduce fuel consumption (FC), without any changes to refuelling infrastructure. The EU market share for this vehicle type in the passenger car segment was 3% in 2018 and this powertrain type remains of interest as an option to meet the European Union (EU) fleet average CO2 limits. EU legislative procedures require emissions limits to be met during the chassis dynamometer test and in the on-road real driving emissions (RDE) test, while official CO2/FC figures are quantified via the laboratory chassis dynamometer test only. This study employed both legislative test procedures and compared the results. Laboratory (chassis) dynamometer testing was conducted using the Worldwide Harmonised Light Vehicles Test Procedure (WLTP). On-road testing was carried out in accordance with RDE requirements, measuring the concentration of regulated gaseous emissions and the number of solid particles (PN).
Technical Paper

On-Board Emissions Measurement from Gasoline, Diesel and CNG fuelled Vehicles

2010-05-05
2010-01-1568
In order to measure the concentration of exhaust emissions a mobile emission testing analyzer SEMTECH DS by SENSORS Inc was used. In the study the results of the vehicle emission tests in the road conditions were presented, as this was the only way to obtain the information on real vehicle emissions. They include information on the emissivity of the vehicles in operation and deal with the real conditions of the vehicle in motion. Reliable measurement results were obtained which were verified in simulated conditions on a chassis test bed. The obtained data were used to specify the dependence characteristics for the influence of the dynamic engine properties on the exhaust emissions. The dynamic engine properties were indirectly taken into account using all the speed range and the range of acceleration calculated for the city traffic in order to prepare a matrix of the emission intensity.
Technical Paper

Exhaust Emission Tests from Agricultural Machinery under Real Operating Conditions

2010-10-05
2010-01-1949
The tests related to the exhaust emissions from non-road vehicles are currently performed on a chassis dynamometer under the name of NRSC (ISO 8178) and NRTC. In light of the growing requirements related to the environment protection in transport the authors recommend determining the exhaust emissions through real vehicle operating conditions. The tests carried out under real operating conditions could be used for the process of optimization of future power trains of regular road vehicles and non-road vehicles. What is more, these tests should be taken into account in the works on the changes of the legislation related to the emission limits from combustion engines. The paper presents the results of the tests on the exhaust emissions from an agricultural harvester engine and a tractor engine in real operating conditions. The harvester operation during the test consisted in crops collection from the field and the tractor operation during the test consisted in plowing.
Technical Paper

Analysis of Emission Factors in RDE Tests As Well as in NEDC and WLTC Chassis Dynamometer Tests

2016-04-05
2016-01-0980
This paper presents a study of passenger cars in terms of emissions measurements in tests conducted under real driving conditions (RDE - Real Driving Emissions) by means of PEMS (Portable Emission Measurement System) equipment. A special feature of the RDE tests presented in this paper is that they were performed under Polish conditions and the specified parameters may differ from those in most other European Union countries. Emission correction coefficients have been defined, based on the test results, equal to the increase (or decrease) of driving emissions during the laboratory (‘chassis dyno’) test or during normal usage in relation to the EU emission standards (emission class) of the vehicle.
Technical Paper

A Comparison of Gaseous Emissions from a Hybrid Vehicle and a Non-Hybrid Vehicle under Real Driving Conditions

2018-04-03
2018-01-1272
In this study, two vehicles were tested under real driving conditions with gaseous exhaust emissions measured using a portable emissions measurement system (PEMS). One of the vehicles featured a hybrid powertrain with a spark ignition internal combustion engine, while the other vehicle featured a non-hybrid (conventional) spark ignition internal combustion engine. Aside from differences in the powertrain, the two test vehicles were of very similar size, weight and aerodynamic profile, meaning that the power demand for a given driving trace was very similar for both vehicles. The test route covered urban conditions (but did include driving on a road with speed limit 90 km/h). The approximate test route distance was 12 km and the average speed was very close to 40 km/h.
Technical Paper

Real Driving Emissions Testing of Vehicles Powered by Compressed Natural Gas

2015-09-01
2015-01-2022
The paper presents results of the road tests of exhaust gas emissions of vehicles of different emission classes (Euro 4 and Euro 5, with different mileage), fuelled with compressed natural gas. The tests of exhaust emissions were conducted on parts of the road with different characteristics of the traffic intensity. For each phase of the tests, the characteristics of the test run and the value of exhaust gas emissions were determined. To measure the exhaust emission the Portable Emission Measurement System (PEMS) was used.
Technical Paper

Exhaust Emissions from Two Euro 6d-Compliant Plug-In Hybrid Vehicles: Laboratory and On-Road Testing

2021-04-06
2021-01-0605
This paper discusses the legislative situation regarding type approval of plug-in hybrid vehicles (also known as off-vehicle charging hybrid-electric vehicles, OVC-HEV) in the range of exhaust emissions and fuel consumption. A range of tests were conducted on two Euro 6d-complaint OVC-HEVs to quantify emissions. Procedures were based on EU legislative requirements. For laboratory (chassis dyno) testing, two different test cycles and three different ambient temperatures were used for testing. Furthermore, in some cases additional measurements were performed, including measurement of emissions of particulate matter and continuous analysis of regulated and unregulated pollutants in undiluted exhaust. Consumption of electrical energy was also monitored. On-road testing was conducted on the test vehicle tested on the chassis dyno in the tests mentioned above, as well as on a second OVC-HEV test vehicle.
X