Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Journal Article

Time-resolved X-ray Tomography of Gasoline Direct Injection Sprays

2015-09-01
2015-01-1873
Quantitative measurements of direct injection fuel spray density and mixing are difficult to achieve using optical diagnostics, due to the substantial scattering of light and high optical density of the droplet field. For multi-hole sprays, the problem is even more challenging, as it is difficult to isolate a single spray plume along a single line of sight. Time resolved x-ray radiography diagnostics developed at Argonne's Advanced Photon Source have been used for some time to study diesel fuel sprays, as x-rays have high penetrating power in sprays and scatter only weakly. Traditionally, radiography measurements have been conducted along any single line of sight, and have been applied to single-hole and group-hole nozzles with few plumes. In this new work, we extend the technique to multi-hole gasoline direct injection sprays.
Journal Article

Quantification of Shot-to-Shot Variation in Single Hole Diesel Injectors

2015-04-14
2015-01-0936
Recent advancements in x-ray radiography diagnostics for direct injection sprays at Argonne's Advanced Photon Source have allowed absorption measurements of individual spray events, in addition to ensemble-averaged measurements. These measurements offer insight into the shot-to-shot variation of these sprays in the near-nozzle, spray formation region. Three single hole diesel injectors are studied across various injection and ambient pressures, spanning 14 different conditions. We calculated two dimensional maps of the standard deviation in line of sight mass distribution between individual spray events. These illuminated the spatial and temporal extent of variability between spray events. Regions of large fluctuations were observed to move downstream during the initial spray period and reached a steady state location after this initial transient.
Technical Paper

X-Ray Measurements of High Pressure Diesel Sprays

2001-03-05
2001-01-0531
A quantitative and time-resolved technique has been developed to probe the fuel distribution very near the nozzle of a high-pressure diesel injector. This technique uses the absorption of synchrotron x-rays to measure the fuel mass with good time and position resolution. The penetrating power of x-rays allows measurements that are difficult with other techniques, such as quantitative measurements of the mass and penetration measurements of the trailing edge of the spray. Line-of-sight measurements were used to determine the fuel density as a function of time. The high time resolution and quantitative nature of the measurement also permit an accurate measure of the instantaneous mass flow rate through the nozzle.
Technical Paper

Effects of Ambient Pressure on Dynamics of Near-Nozzle Diesel Sprays Studied by Ultrafast X-Radiography

2004-06-08
2004-01-2026
A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (< 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar N2 and 1 bar SF6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved x-radiographic data revealed that the spray penetration in this near nozzle region was not significantly affected by the limited change of the ambient pressure.
Journal Article

Internal Nozzle Flow Simulations of the ECN Spray C Injector under Realistic Operating Conditions

2020-04-14
2020-01-1154
In this study, three-dimensional large eddy simulations were performed to study the internal nozzle flow of the ECN Spray C diesel injector. Realistic nozzle geometry, full needle motion, and internal flow imaging data obtained from X-ray measurements were employed to initialize and validate the CFD model. The influence of injection pressure and fuel properties were investigated, and the effect of mesh size was discussed. The results agreed well with the experimental data of mass flow rate and correctly captured the flow structures inside the orifice. Simulations showed that the pressure drop near the sharp orifice inlet triggered flow separation, resulting in the ingestion of ambient gas into the orifice via a phenomenon known as hydraulic flip. At higher injection pressure, the pressure drop was more significant as the liquid momentum increased and the stream inertia was less prone to change its direction.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
X