Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Fuel Design Concept for Robust Ignition in HCCI Engine and Its Application to Optimize Methane-Based Blend

2014-04-01
2014-01-1286
A fuel design concept for an HCCI engine based on chemical kinetics to optimize the heat release profile and achieve robust ignition was proposed, and applied to the design of the optimal methane-based blend. Ignition process chemistry of each single-component of natural gas, methane, ethane, propane, n-butane and isobutane, was analyzed using detailed chemical kinetic computations. Ethane exhibits low ignitability, close to that of methane, when the initial temperature is below 800 K, but higher ignitability, close to those of propane, n-butane and isobutane, when the initial temperature is above 1100 K. Furthermore, ethane shows a higher heat release rate during the late stage of the ignition process. If the early stage of an ignition process takes place during the compression stroke, this kind of heat release profile is desirable in an HCCI engine to reduce cycle-to-cycle variation during the expansion stroke.
Journal Article

Evaluation of Engine Performance and Combustion in Natural Gas Engine with Pre-Chamber Plug under Lean Burn Conditions

2014-11-11
2014-32-0103
Engines using natural gas as their main fuel are attracting attention for their environmental protection and energy-saving potential. There is demand for improvement in the thermal efficiency of engines as an energy-saving measure, and research in this area is being actively pursued on spark ignition engines and HCCI engines. In spark ignition gas engines, improving combustion under lean condition and EGR (exhaust gas recirculation) condition is an issue, and many large gas engines use a pre-chamber. The use of the pre-chamber approach allows stable combustion of lean gas mixtures at high charging pressure, and the reduction of NOx emissions. In small gas engines, engine structure prevents the installation of pre-chambers with adequate volume, and it is therefore unlikely that the full benefits of the pre-chamber approach will be derived.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

2014-11-11
2014-32-0108
Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Journal Article

Ignition Characteristics of Ethane and Its Roles in Natural Gas for HCCI Engine Operation

2015-04-14
2015-01-0811
The ignition characteristics of each component of natural gas and the chemical kinetic factors determining those characteristics were investigated using detailed chemical kinetic calculations. Ethane (C2H6) showed a relatively short ignition delay time with high initial temperature; the heat release profile was slow in the early stage of the ignition process and rapid during the late stage. Furthermore, the ignition delay time of C2H6 showed very low dependence on O2 concentration. In the ignition process of C2H6, HO2 is generated effectively by several reaction paths, and H2O2 is generated from HO2 and accumulated with a higher concentration, which promotes the OH formation rate of H2O2 (+ M) = OH + OH (+ M). The ignition characteristics for C2H6 can be explained by H2O2 decomposition governing OH formation at any initial temperature.
X