Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Computational Modeling of the Flow and Heat Transfer in an Internal Combustion Engine-Relevant Cooling Channel

2023-04-11
2023-01-0198
The “Water Spider Geometry” (WSG) configuration, representing a newly developed reference test sample designed to suitably investigate the flow and heat transfer processes relevant to cooling systems of internal combustion engines, was computationally investigated by applying a recently proposed Reynolds Stress model called the “Elliptic-Blending Model” (EBM). The WSG configuration resembles a specifically configured pipe geometry that appropriately mimics the flow phenomena encountered in cooling channels of realistic internal combustion engine, such as flow impingement and bifurcation, multiple deflections and flow confluence. The reference database, consisting of mean flow and turbulence fields, was provided by a Large-Eddy Simulation. The EBM formulation has been intensively validated by calculating numerous isothermal wall-bounded flows. The present work focuses on testing the EBM predictive performances under the conditions of non-isothermal flow scenarios.
Technical Paper

Eddy-Resolving Simulation of Conjugate Heat Transfer in a Test Specimen pertinent to Cooling Channels in IC Engines

2024-04-09
2024-01-2692
The conjugate heat transfer, which effectively integrates the heat conduction within the solid metal block of the so-called Water Spider Geometry (WSG) configuration and the fluid domain within it, is computationally investigated in the present work, allowing an accurate representation of the temperature conditions at the solid-fluid interface. The WSG configuration represents a specially configured tube geometry that effectively reproduces the flow behavior observed in cooling channels associated with Internal Combustion (IC) engines. The inherent high flow unsteadiness potential of the WSG flow configuration, resulting from the complex flow guidance involving phenomena such as flow impingement, bifurcation, multiple deflections and flow confluence, requires the application of a model capable of capturing turbulence fluctuations.
X