Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Computational Study of Joint Effects of Shear, Compression and Swirl on Flow and Turbulence in a Valveless Piston-Cylinder Assembly

2001-03-05
2001-01-1236
The potential of single-point turbulence closure models for predicting the flow aerodynamics and turbulence in internal combustion engines (IC) was investigated by computational study of idealized valveless piston/cylinder configurations. The main flow cases considered are the swirling flow in a single stroke rapid compression machine (RCM) with flat and bowl-shaped cylinder head, as well as cyclic compression. Although still remote from a real engine, these configurations enable to analyse joint effects of major phenomena governing the aerodynamics in IC engines: shear, separation, swirl and compression/expansion. Prior to the computation of these engine-like flows, an extensive validation of applied turbulence models was performed in homogeneous and wall bounded shear flows, each featuring separately rotation, swirl and mean flow compression effects.
Technical Paper

Structural Flow Properties in IC Engine-Relevant Piston-Cylinder Configurations: An Eddy-Resolving Modelling Study

2022-03-29
2022-01-0399
The feasibility of a recently developed eddy-resolving model of turbulence, termed as Very LES (Large-Eddy-Simulation), was tested by simulating the flow dynamics in two moving piston-cylinder assemblies. The first configuration deals with the compression of a tumbling vortex generated during the intake process within a cylinder with the square cross-sectional area, for which the reference experimental database was made available by Borée et al. (2002). The second piston-cylinder assembly represents a realistic motored IC-Engine (Internal-Combustion Engine) with the multiple Y-shaped intake and outtake ducts in which the movable valves are accommodated. The boundary and operating conditions correspond to the experimental study performed by Baum et al. (2014). The VLES simulation model applied presently is a seamless eddy-resolving hybrid RANS/LES (Reynolds-Averaged Navier-Stokes / Large-eddy Simulation) model.
Journal Article

LES-Predicted Flow Patterning in a Newly-Designed Reference Test Sample with Relevance to IC Engine-Related Cooling Channels

2022-03-29
2022-01-0394
A test sample configuration with a circular cross-section has been conceptualized to reproduce all geometrically relevant flow-guided elements - straight segments, deflections, bifurcations, impingement regions, confluence - as they can also be found in the cooling systems of realistic Internal Combustion (IC) engines. This newly-designed reference test sample is termed as Water Spider Geometry (WSG), with the shape inspired by the flow guidance around an IC engine cylinder head. Computational investigations are carried out within the framework of a BMWi (German Federal Ministry for Economic Affairs and Energy) project by applying a well-resolved, highly comprehensive Large Eddy Simulation aiming at providing a meaningful assessment of the isothermal flow topology within the WSG. The basis forms a fully-hexahedral, block-structured grid arrangement comprising 290 million cells with the results considered to be a reference solution for further investigations.
X