Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Direct-Injected Hydrogen-Methane Mixtures in a Heavy-Duty Compression Ignition Engine

2006-04-03
2006-01-0653
A diesel pilot-ignited, high-pressure direct-injection of natural gas heavy-duty single-cylinder engine was fuelled with both natural gas and blends of 10% and 23% by volume hydrogen in methane. A single operating condition (6 bar GIMEP, 0.5 ϕ, 800 RPM, 40%EGR) was selected, and the combustion phasing was varied from advanced (mid-point of combustion at top-dead-center) to late (mid-point of combustion at 15°ATDC). Replacing the natural gas with hydrogen/methane blend fuels was found to have a significant influence on engine emissions and on combustion stability. The use of 10%hydrogen was found to slightly reduce PM, CO, and tHC emissions, while improving combustion stability. 23%hydrogen was found to substantially reduce CO and tHC emissions, while slightly increasing NOx. The greatest reductions in CO and tHC, along with a significant reduction in PM, were observed at the latest combustion timings, where combustion stability was lowest.
Journal Article

Multiple Injection Strategy in a Direct-Injection Natural Gas Engine with Entrained Diesel

2009-06-15
2009-01-1954
A new fuel injector prototype for heavy-duty engines has been developed to use direct-injection natural gas with small amounts of entrained diesel as an ignition promoter. This “co-injection” is quite different from other dual-fuel engine systems, where diesel and gas are introduced separately. Reliable compression-ignition can be attained, but two injections per engine cycle are needed to minimize engine knock. In the present paper the interactions between diesel injection mass, combustion timing, engine load, and engine speed are investigated experimentally in a heavy-duty single-cylinder engine. For the tests with this injector, ignition delay ranged from 1.2–4.0 ms (of which injector delay accounts for ~0.9 ms). Shorter ignition delays occurred at higher diesel injection masses and advanced combustion timing. At ignition delays shorter than 2.0 ms, knock intensity decreased with increasing ignition delay.
X