Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Injection Parameter Effects on a Direct Injected, Pilot Ignited, Heavy Duty Natural Gas Engine with EGR

2003-10-27
2003-01-3089
Pilot-ignited direct injection of natural gas fuelling of a heavy-duty compression ignition engine while using recirculated exhaust gas (EGR) has been shown to significantly reduce NOx emissions. To further investigate emissions reductions, the combustion timing, injection pressure, and relative delay between the pilot and main fuel injections were varied over a range of EGR fractions while engine speed, net charge mass, and oxygen equivalence ratio were held constant. PM emissions were reduced by higher injection pressures without significantly affecting NOx at all EGR conditions. By delaying the combustion, NOx was reduced at the expense of increased PM for a given EGR fraction. By reducing the delay between the pilot and main fuel injections at high EGR, PM emissions were substantially reduced at the expense of increased total hydrocarbon (tHC) emissions. In this research, no attempt was made to optimize the injector or combustion chamber for natural gas fuelling with EGR.
Technical Paper

The Effects of Reingested Particles on Emissions from a Heavy-Duty Direct Injection of Natural Gas Engine

2006-10-16
2006-01-3411
The use of exhaust gas recirculation (EGR) to control NOx emissions from direct-injection engines results in the reintroduction of exhaust particulate matter (PM) into the intake manifold. The influence of this recirculated PM on emissions from a pilot-ignited direct injection of natural gas engine was studied by installing a filter in the EGR system. Comparison tests at fixed engine conditions were conducted to identify differences between filtered and unfiltered EGR. No significant variations in gaseous or PM mass emissions were detected. This indicates that the recirculated PM is not contributing substantially to the increases in PM mass emissions commonly observed with EGR. Reductions in black carbon and ultra-fine particle exhaust concentrations in the exhaust were observed at the highest EGR fractions with the filter installed.
Technical Paper

The Effects of Varying EGR Test Conditions on a Direct Injection of Natural Gas Heavy-Duty Engine with High EGR Levels

2004-10-25
2004-01-2955
Determining what exhaust gas recirculation (EGR) control parameters have the largest impact on engine performance and emissions is of critical importance when developing an EGR-equipped engine. These tests studied the effects of varying the net charge mass, the fresh air charge mass, the indicated power, and the oxygen equivalence ratio at various EGR fractions. The research was carried out on a direct-injection, natural gas fuelled, pilot-ignited four-stroke heavy-duty engine using Westport Innovations Inc.'s pilot-ignited, direct injection of natural gas technology. The testing was carried out using a prototype injector and the standard diesel-fuelled engine's combustion chamber. The results indicate that fuel efficiency, as well as emissions of Nitrogen Oxides (NOx) and Carbon Monoxide (CO) depend primarily on the EGR level, and not on the values of the EGR control parameters.
Technical Paper

Intake and Exhaust Valve Timing Control on a Heavy-Duty, Direct-Injection Natural Gas Engine

2015-04-14
2015-01-0864
Natural gas high pressure direct injection (HPDI) engines represent a technology with the potential for lower engine-out emissions and reduced fuel costs over a diesel engine. This combustion process uses a direct injection of natural gas, into the combustion chamber of a high compression ratio engine, to maintain diesel engine performance. As natural gas will not auto-ignite at typical engine conditions, a small quantity of diesel pilot fuel is used to initiate the combustion event. One potential technique to improve engine performance is the optimization of the intake and exhaust valve timings. To experimentally investigate these effects, tests were performed on a single cylinder engine based on Westport Innovation's 15L HD engine. The intake valve closing time was varied both before and after the standard closing (EIVC and LIVC). Early closing of the exhaust valve was also tested (EEVC).
X