Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Direct Injection of Natural Gas at up to 600 Bar in a Pilot-Ignited Heavy-Duty Engine

2015-04-14
2015-01-0865
Retaining the diesel combustion process but burning primarily natural gas offers diesel-like efficiencies from a natural-gas fuelled heavy-duty engine. This combustion event is limited by the injection pressure of the fuel, as this dictates the rate of mixing and hence of combustion. Typical late-cycle direct injection applications are limited to approximately 300 bar fuel pressure. The current work reports on tests for the first time at natural gas injection pressures up to 600 bar. The results show that significant efficiency and particulate matter reductions can be achieved at high loads, especially at higher speeds where the combustion is injection rate limited at conventional pressures. Increases in combustion noise and harshness are a drawback of higher pressures, but these can be mitigated by reducing the diameter of the nozzle gas holes to control the fuel injection rate.
Technical Paper

The Effects of Reingested Particles on Emissions from a Heavy-Duty Direct Injection of Natural Gas Engine

2006-10-16
2006-01-3411
The use of exhaust gas recirculation (EGR) to control NOx emissions from direct-injection engines results in the reintroduction of exhaust particulate matter (PM) into the intake manifold. The influence of this recirculated PM on emissions from a pilot-ignited direct injection of natural gas engine was studied by installing a filter in the EGR system. Comparison tests at fixed engine conditions were conducted to identify differences between filtered and unfiltered EGR. No significant variations in gaseous or PM mass emissions were detected. This indicates that the recirculated PM is not contributing substantially to the increases in PM mass emissions commonly observed with EGR. Reductions in black carbon and ultra-fine particle exhaust concentrations in the exhaust were observed at the highest EGR fractions with the filter installed.
Technical Paper

PM and NOx Reduction by Injection Parameter Alterations in a Direct Injected, Pilot Ignited, Heavy Duty Natural Gas Engine With EGR at Various Operating Conditions

2005-04-11
2005-01-1733
The use of pilot-ignited, direct-injected natural gas in a heavy-duty compression-ignition engine has been shown to reduce emissions while maintaining performance and efficiency. Adding recirculated exhaust gas (EGR) has been shown to further reduce emissions of nitric oxides (NOx), albeit at the cost of increased hydrocarbons (tHC), carbon monoxide (CO), and particulate matter (PM) emissions at high EGR fractions. Previous tests have suggested that reducing the delay between the diesel and natural gas injections, increasing the injection pressure, or adjusting the combustion timing have individually achieved substantial emissions benefits. To investigate the effectiveness of combining these techniques, and of using them over a wide range of operating conditions, a series of tests were carried out. The first set of tests investigated the interactions between these effects and the EGR fraction.
Technical Paper

The Effects of Varying EGR Test Conditions on a Direct Injection of Natural Gas Heavy-Duty Engine with High EGR Levels

2004-10-25
2004-01-2955
Determining what exhaust gas recirculation (EGR) control parameters have the largest impact on engine performance and emissions is of critical importance when developing an EGR-equipped engine. These tests studied the effects of varying the net charge mass, the fresh air charge mass, the indicated power, and the oxygen equivalence ratio at various EGR fractions. The research was carried out on a direct-injection, natural gas fuelled, pilot-ignited four-stroke heavy-duty engine using Westport Innovations Inc.'s pilot-ignited, direct injection of natural gas technology. The testing was carried out using a prototype injector and the standard diesel-fuelled engine's combustion chamber. The results indicate that fuel efficiency, as well as emissions of Nitrogen Oxides (NOx) and Carbon Monoxide (CO) depend primarily on the EGR level, and not on the values of the EGR control parameters.
X