Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

The CFD Analysis of Pressure Pulsation in the Aircraft Engine and Control Systems Lubrication Pump

2013-09-17
2013-01-2084
Fluid pressure pulsation in a fluid system is an inherent consideration in applications such as aircraft engine and control systems where mechanical component fatigue life and flow performance are critical. Positive displacement pumps transmitting fluid through hydraulic lines under high pressure impart periodic flow pulses to the fluid which can induce undesirable pressure ripple. Some failures of advanced aircraft prototype hardware were traced to a break in the hydraulic component of the control system due to severe localized responses to periodic pressure pulsations produced by a pump flow-induced ripple at the system resonant frequency. This response is associated with a strong structural fluid resonance that is not sufficiently damped by fluid leakage internal to the aircraft hydraulic system. In the case of pumps or hydraulic motors the main source of pulsation energy is in the flow-induced pressure wave associated with the system plumbing pressure pulsations.
Journal Article

The Jet Fuel Hydrodynamic Cavitation Bubble Size with Cavitation Power and Energy from Rayleigh-Plesset Equation

2015-09-15
2015-01-2389
Cavitation erosion in aircraft engine and control systems is a major concern in hydrodynamic power units. In developing turbulent flow of low pressure and high velocities, a certain amount of cavitation erosion is not unusual. Cavitation can occur with the presence of fuel vapor or air bubbles dissolved in the fuel tank that are transported through the system. Cavitation erosion is caused by collapse of the bubble, which occurs violently and creates a pressure shock wave of fluid. Striking a solid surface, the shock wave can cause progressive damage if it persists. A kinetic cavitation power rate is developed to make a meaningful estimation of the cavitation erosion rate theoretically, which then can be validated with laboratory experiments. Theoretically, we manipulate parameters such as bubble size, collapse pressure, and energy for a given fuel system design, finding variation within each component of the system.
Technical Paper

CFD Numerical Simulation Aero-engine Air-Oil Separator

2022-03-08
2022-01-0027
Engine oil systems drive and de-aerate air-oil solutions in a two-phase flow to provide an appropriate amount of oil lubrication and cooling. especially in aero-engine and starter-generator component and system. The oil lubrication systems combine three important functions of the Main Oil Pump (MOP) for lubrication and scavenging: the de-aeration and de-oiling of the air-oil mixture generated in the bearing and gearbox sumps and pumping the oil towards the tank. These are critical functions for the aero-engine and starter-generator. An aero-engine lubrication system along with an integrated pump and separation of gas-liquid mixture has been developed and characterized experimentally to increase Collins Aerospace Engine and Control Systems research and development productivity. This system has also improved engine and starter-generator reliability and system performance.
X