Refine Your Search

Topic

Search Results

Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Journal Article

Combustion Recession after End of Injection in Diesel Sprays

2015-04-14
2015-01-0797
This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel sprays. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-of-injection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the end-of-injection transient determine the success or failure of combustion recession.
Journal Article

Soot Quantification of Single-Hole Diesel Sprays by Means of Extinction Imaging

2015-09-06
2015-24-2417
A radiation-based 2-color method (2C) and light extinction imaging (LEI) have been performed simultaneously to obtain two-dimensional soot distribution information within a diesel spray flame. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector. The fuel used here is a blend of 30% Decane and 70% Hexadecane (in mass). According to previous research, operating conditions with three different flame soot amounts were investigated. The main purpose of this work is to evaluate the two soot diagnostics techniques, after proper conversion of soot-related values from both methods. All the KL extinction values are lower than the saturation limit. As expected, both techniques show sensitivity with the parametric variation. The soot amount increases with higher ambient gas temperature and lower injection pressure. However, the LEI technique presents more sensitivity to the soot quantity.
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Lift-Off Length and KL Extinction Measurements of Biodiesel and Fischer-Tropsch Fuels under Quasi-Steady Diesel Engine Conditions

2011-09-11
2011-24-0037
The relationship between ignition, lift-off length and soot formation was investigated for a collection of fuels in an optically-accessible modified 2-stroke engine under a set of typical quasi-steady state Diesel DI conditions. Five fuels including biodiesel blends and Fischer-Tropsch fuels have been selected for their potential to substitute conventional diesel with no major modifications on the engine hardware, and were previously characterized under ambient pressure following ASTM standards. Fuels were injected into a large volume through a single-hole nozzle at three levels of injection pressure, by sweeping ambient temperatures at constant density, and ambient densities at constant temperature. The 8 ms single-shot injections were long enough to reach the stabilization of a free diffusion flame. The OH-chemiluminescence was imaged and lift-off length was measured via image post-processing.
Technical Paper

Combustion Behaviour of Blends of Synthetic Fuels in an Optical Single Cylinder Engine

2021-09-05
2021-24-0038
The reduction of carbon footprint of compression ignition engines for road transport makes it necessary to search for clean fuels alternative to diesel and to evaluate them under engine conditions. For this reason, in this paper, the combustion behaviour of different blends of synthetic fuels has been analyzed in an optical single cylinder engine of Medium Duty size (0,8 liters per cylinder) by means of optical techniques. The aim is to evaluate the effect of synthetic fuels, both partly or completely fossil diesel, in terms of combustion behaviours and soot formation. Therefore, different blends of oxymethylene dimethyl ether (OMEX) with diesel and neat hydrotreated vegetable oil (HVO) were studied. A conventional common rail injection system and a single injection strategy was used. In addition, special care was taken to ensure that conditions inside the engine cylinder at the injection start were as close as possible to the conditions used in previous studies.
Journal Article

An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber

2017-03-28
2017-01-0850
Visualization of single-hole nozzles into quiescent ambient has been used extensively in the literature to characterize spray mixing and combustion. However in-cylinder flow may have some meaningful impact on the spray evolution. In the present work, visualization of direct diesel injection spray under both non-reacting and reacting operating conditions was conducted in an optically accessible two-stroke engine equipped with a single-hole injector. Two different high-speed imaging techniques, Schlieren and UV-Light Absorption, were applied here to quantify vapor penetration for non-reacting spray. Meanwhile, Mie-scattering was used to measure the liquid length. As for reacting conditions, Schlieren and OH* chemiluminescence were simultaneously applied to obtain the spray tip penetration and flame lift-off length under the same TDC density and temperature. Additionally, PIV was used to characterize in-cylinder flow motion.
Technical Paper

Influence of Pre- and Post-Injection on the Performance and Pollutant Emissions in a HD Diesel Engine

2001-03-05
2001-01-0526
The work presented here focuses on the influence of pre- and post-injection on the development of the combustion process and on engine efficiency and pollutant emissions. Tests were performed with a heavy-duty 1.8 litre single-cylinder engine. The study combines performance and emissions measurements together with heat release law analysis. Four representative operating conditions from the European Steady state test Cycle (ESC) have been considered. For each one, the fuel quantity of the pre- and post-injection has been varied between 12 and 20 mg/cc, and the delay of the pre- and post-injection respect to the main injection has been modified too. With a pre-injection strategy it has been possible to reduce the fuel consumption with little soot penalty but causing an increase in NOx levels in most engine modes. The post-injection strategy has been demonstrated to be efficient in soot reduction without NOx emission and fuel consumption penalty.
Technical Paper

Application of Neural Networks for Prediction and Optimization of Exhaust Emissions in a H.D. Diesel Engine

2002-03-04
2002-01-1144
A study of the feasibility of using engine operating parameters to predict and minimise exhaust emissions from a direct injection H.D. Diesel engine through the use of Neural Networks (NN) was conducted. The objective is to create a mathematical tool that, learning from a large number of experimental data obtained under different operating conditions, is able to parametrize oxides of nitrogen (NOx) and particulate matter (PM) exhaust emissions as a function of engine operating parameters. Once satisfactory NN predictive results were obtained, the tool was also used to simultaneously optimise several operating parameters for low exhaust emissions. The optimisation was based on a minimising process related to EURO IV standards regulations.
Technical Paper

Engine with Optically Accessible Cylinder Head: A Research Tool for Injection and Combustion Processes

2003-03-03
2003-01-1110
The upcoming emission regulations for Diesel engines will become more restrictive. This has made it necessary to develop new diagnostic tools and methods that allow to obtain a more accurate knowledge about the chemical and physical phenomena that occur during the atomization, evaporation and ignition of the fuel spray. This paper describes an experimental setup for injection and combustion research. The system is based on a two-stroke direct injection Diesel engine whose cylinder head is equipped with four optical accesses. Inlet flow can be switched either to nitrogen or to ambient air. In both cases, thermodynamic properties are controlled to reproduce the actual conditions of density, temperature and pressure at the end of the compression stroke in a real engine. A high-pressure common-rail system with an electronic control unit makes it possible to modify injection parameters: pressure, timing, duration and frequency.
Technical Paper

Soot Characterization of Diesel/Gasoline Blends Injected through a Single Injection System in CI engines

2017-09-04
2017-24-0048
In the past few years’ various studies have shown how the application of a highly premixed dual fuel combustion for CI engines leads a strong reduction for both pollutant emissions and fuel consumption. In particular a drastic soot and NOx reduction were achieved. In spite of the most common strategy for dual fueling has been represented by using two different injection systems, various authors are considering the advantages of using a single injection system to directly inject blends in the chamber. In this scenario, a characterization of the behavior of such dual-fuel blend spray became necessary, both in terms of inert and reactive ambient conditions. In this work, a light extinction imaging (LEI) has been performed in order to obtain two-dimensional soot distribution information within a spray flame of different diesel/gasoline commercial fuel blends. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector.
Technical Paper

Characterization of Spray Evaporation and Mixing Using Blends of Commercial Gasoline and Diesel Fuels in Engine-Like Conditions

2017-03-28
2017-01-0843
Recent studies have shown that the use of highly premixed dual fuel combustion reduces pollutant emissions and fuel consumption in CI engines. The most common strategy for dual fueling is to use two injection systems. Port fuel injection for low reactivity fuel and direct injection for high reactivity fuel. This strategy implies some severe shortcomings for its real implementation in passenger cars such as the use of two fuel tanks. In this sense, the use of a single injection system for dual fueling could solve this drawback trying to maintain pollutant and efficiency benefits. Nonetheless, when single injection system is used, the spray characteristics become an essential issue. In this work the fundamental characteristics of dual-fuel sprays with a single injection system under non-evaporating engine-like conditions are presented.
Technical Paper

Evaluation of Vortex Center Location Algorithms for Particle Image Velocimetry Data in an Optical Light-Duty Compression Ignition Engine

2018-04-03
2018-01-0209
Ever decreasing permitted emission levels and the necessity of more efficient engines demand a better understanding of in-cylinder phenomena. In swirl-supported compression ignition (CI) engines, mean in-cylinder flow structures formed during the intake stroke deeply influence mixture preparation prior to combustion, heat transfer and pollutant oxidation all of which could potentially improve engine performance. Therefore, the ability to characterize these mean flow structures is relevant for achieving performance improvements. CI mean flow structure is mainly described by a precessing vortex. The location of the vortex center is key for the characterization of the flow structure. Consequently, this work aims at evaluating algorithms that allow for the location of the vortex center both, in ensemble-averaged velocity fields and in instantaneous velocity fields.
Technical Paper

Schlieren Measurements of the ECN-Spray A Penetration under Inert and Reacting Conditions

2012-04-16
2012-01-0456
In the wake of the Turbulent Nonpremixed Flames group (TNF) for atmospheric pressure flames, an open group of laboratories belonging to the Engine Combustion Network (ECN) agreed on a list of boundary conditions -called “Spray A”- to study the free diesel spray under steady-state conditions. Such conditions are relevant of a diesel engine operating at low temperature combustion conditions with moderate EGR, small nozzle and high injection pressure. The objective of this program is to accelerate the understanding of diesel flames, by applying each laboratory's knowledge and skills to a specific set of boundary conditions, in order to give an extensive and reliable experimental database to help spray modeling. In the present work, “Spray A” operating condition has been achieved in a constant pressure, continuous flow vessel. Schlieren high-speed imaging has been conducted to measure the spray penetration under evaporative conditions.
Technical Paper

A Soot Radiation Model for Diesel Sprays

2012-04-16
2012-01-1069
Soot radiation has an important contribution to the overall heat losses in a combustion chamber of a DI diesel engine. The aim of this study was to develop a soot radiation model coupled to a soot formation/oxidation sub-model, which is also described in the paper. On the one hand, the soot radiation model is based on the available knowledge of the radiation of a soot cloud commonly used to apply the two-color method to diesel sprays. On the other hand, it was tuned and validated with experimental data: the optical thickness, KL, obtained from the laser extinction method, and the radiation intensity at two different wavelengths. Once the model was validated, the overall radiated power was calculated taking into account the radiation absorption caused by the spray itself. This power was compared to the one released by the spray combustion process, and the results were in agreement with other studies available in the literature.
Technical Paper

An Investigation of the Engine Combustion Network ‘Spray B’ in a Light Duty Single Cylinder Optical Engine

2018-04-03
2018-01-0220
Engine Combustion Network promotes fundamental investigations on a number of different spray configurations with the goal of providing experimental results under highly controlled conditions for CFD validation. Most of the available experiments up to now have been obtained in spray vessels, which miss some of the interactions governing spray evolution in the combustion chamber of an engine, such as the jet wall interaction and the transient conditions in the combustion chamber. The main aim of the present research is to compare the results obtained with a three-hole, 90 μm injector, known as ECN’s Spray B, in these constant-volume vessels and more recent Heavy-Duty engines with those obtained in a Light Duty Single Cylinder Optical Engine, under inert and reactive conditions, using n-dodecane. In-cylinder conditions during the injection were estimated by means of a 1-D and 0-D model simulation, accounting for heat transfer and in-cylinder mass evolution.
Technical Paper

Influence of Boost Pressure and Injection Pressure on Combustion Process and Exhaust Emissions in a HD Diesel Engine

2004-06-08
2004-01-1842
The scope of this study is the analysis of the influence of boost pressure and injection pressure on combustion process and pollutant emissions. The influence of these parameters is investigated for different engine speeds. Fuel mass was kept constant for all the tests in order to avoid its influence on the analysis. A single cylinder research diesel engine, equipped with a common rail injection system capable of operating up to a maximum pressure of 150 MPa was used. Special attention was paid to NOx, smoke (which are the most important pollutants for legislation) and brake specific fuel consumption.
Technical Paper

Quasi-1D Analysis of n-Dodecane Split Injection Process

2022-03-29
2022-01-0506
Split injection processes have been analyzed by means of a Quasi-1D spray model that has been recently coupled to a laminar tabulated unsteady-flamelet progress-variable (UFPV) combustion model. The modelling approach can predict ignition delay and lift-off for long injection profiles, and it is now extended to a two-pulse injection scheme. In spite of the simplicity of the approach, relevant phenomena are adequately reproduced. In particular, the faster penetration of the second injection pulse compared to the first one is captured by the model both under inert and reacting conditions. The second pulse ignites much faster than the first one due to the injection into the remnants of the first one, where high temperature oxygen-depleted regions can be found. Ignition of the second pulse happens as soon as the first pulse reaches this region, with a faster low- to high-temperature transition.
Technical Paper

An Experimental Investigation on Spray Mixing and Combustion Characteristics for Spray C/D Nozzles in a Constant Pressure Vessel

2018-09-10
2018-01-1783
The Engine Combustion Network (ECN) is a coordinate effort from research partners from all over the world which aims at creating a large experimental database to validate CFD calculations. Two injectors from ECN, namely Spray C and D, have been compared in a constant pressure flow vessel, which enables a field of view of more than 100 mm. Both nozzles have been designed with similar flow metrics, with Spray D having a convergent hole shape and Spray C a cylindrical one, the latter being therefore more prone to cavitation. Although the focus of the study is on reacting conditions, some inert cases have also been measured. High speed schlieren imaging, OH* chemiluminescence visualization and head-on broadband luminosity have been used as combustion diagnostics to evaluate ignition delay, lift off length and reacting tip penetration. Parametric variations include ambient temperature, oxygen content and injection pressure variations.
X