Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Journal Article

Soot Quantification of Single-Hole Diesel Sprays by Means of Extinction Imaging

2015-09-06
2015-24-2417
A radiation-based 2-color method (2C) and light extinction imaging (LEI) have been performed simultaneously to obtain two-dimensional soot distribution information within a diesel spray flame. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector. The fuel used here is a blend of 30% Decane and 70% Hexadecane (in mass). According to previous research, operating conditions with three different flame soot amounts were investigated. The main purpose of this work is to evaluate the two soot diagnostics techniques, after proper conversion of soot-related values from both methods. All the KL extinction values are lower than the saturation limit. As expected, both techniques show sensitivity with the parametric variation. The soot amount increases with higher ambient gas temperature and lower injection pressure. However, the LEI technique presents more sensitivity to the soot quantity.
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Lift-Off Length and KL Extinction Measurements of Biodiesel and Fischer-Tropsch Fuels under Quasi-Steady Diesel Engine Conditions

2011-09-11
2011-24-0037
The relationship between ignition, lift-off length and soot formation was investigated for a collection of fuels in an optically-accessible modified 2-stroke engine under a set of typical quasi-steady state Diesel DI conditions. Five fuels including biodiesel blends and Fischer-Tropsch fuels have been selected for their potential to substitute conventional diesel with no major modifications on the engine hardware, and were previously characterized under ambient pressure following ASTM standards. Fuels were injected into a large volume through a single-hole nozzle at three levels of injection pressure, by sweeping ambient temperatures at constant density, and ambient densities at constant temperature. The 8 ms single-shot injections were long enough to reach the stabilization of a free diffusion flame. The OH-chemiluminescence was imaged and lift-off length was measured via image post-processing.
Technical Paper

Influence of Pre- and Post-Injection on the Performance and Pollutant Emissions in a HD Diesel Engine

2001-03-05
2001-01-0526
The work presented here focuses on the influence of pre- and post-injection on the development of the combustion process and on engine efficiency and pollutant emissions. Tests were performed with a heavy-duty 1.8 litre single-cylinder engine. The study combines performance and emissions measurements together with heat release law analysis. Four representative operating conditions from the European Steady state test Cycle (ESC) have been considered. For each one, the fuel quantity of the pre- and post-injection has been varied between 12 and 20 mg/cc, and the delay of the pre- and post-injection respect to the main injection has been modified too. With a pre-injection strategy it has been possible to reduce the fuel consumption with little soot penalty but causing an increase in NOx levels in most engine modes. The post-injection strategy has been demonstrated to be efficient in soot reduction without NOx emission and fuel consumption penalty.
Technical Paper

Application of Neural Networks for Prediction and Optimization of Exhaust Emissions in a H.D. Diesel Engine

2002-03-04
2002-01-1144
A study of the feasibility of using engine operating parameters to predict and minimise exhaust emissions from a direct injection H.D. Diesel engine through the use of Neural Networks (NN) was conducted. The objective is to create a mathematical tool that, learning from a large number of experimental data obtained under different operating conditions, is able to parametrize oxides of nitrogen (NOx) and particulate matter (PM) exhaust emissions as a function of engine operating parameters. Once satisfactory NN predictive results were obtained, the tool was also used to simultaneously optimise several operating parameters for low exhaust emissions. The optimisation was based on a minimising process related to EURO IV standards regulations.
Technical Paper

Soot Characterization of Diesel/Gasoline Blends Injected through a Single Injection System in CI engines

2017-09-04
2017-24-0048
In the past few years’ various studies have shown how the application of a highly premixed dual fuel combustion for CI engines leads a strong reduction for both pollutant emissions and fuel consumption. In particular a drastic soot and NOx reduction were achieved. In spite of the most common strategy for dual fueling has been represented by using two different injection systems, various authors are considering the advantages of using a single injection system to directly inject blends in the chamber. In this scenario, a characterization of the behavior of such dual-fuel blend spray became necessary, both in terms of inert and reactive ambient conditions. In this work, a light extinction imaging (LEI) has been performed in order to obtain two-dimensional soot distribution information within a spray flame of different diesel/gasoline commercial fuel blends. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector.
Technical Paper

Soot Model Calibration Based on Laser Extinction Measurements

2016-04-05
2016-01-0590
In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
Technical Paper

Evaluation of Vortex Center Location Algorithms for Particle Image Velocimetry Data in an Optical Light-Duty Compression Ignition Engine

2018-04-03
2018-01-0209
Ever decreasing permitted emission levels and the necessity of more efficient engines demand a better understanding of in-cylinder phenomena. In swirl-supported compression ignition (CI) engines, mean in-cylinder flow structures formed during the intake stroke deeply influence mixture preparation prior to combustion, heat transfer and pollutant oxidation all of which could potentially improve engine performance. Therefore, the ability to characterize these mean flow structures is relevant for achieving performance improvements. CI mean flow structure is mainly described by a precessing vortex. The location of the vortex center is key for the characterization of the flow structure. Consequently, this work aims at evaluating algorithms that allow for the location of the vortex center both, in ensemble-averaged velocity fields and in instantaneous velocity fields.
Technical Paper

A Soot Radiation Model for Diesel Sprays

2012-04-16
2012-01-1069
Soot radiation has an important contribution to the overall heat losses in a combustion chamber of a DI diesel engine. The aim of this study was to develop a soot radiation model coupled to a soot formation/oxidation sub-model, which is also described in the paper. On the one hand, the soot radiation model is based on the available knowledge of the radiation of a soot cloud commonly used to apply the two-color method to diesel sprays. On the other hand, it was tuned and validated with experimental data: the optical thickness, KL, obtained from the laser extinction method, and the radiation intensity at two different wavelengths. Once the model was validated, the overall radiated power was calculated taking into account the radiation absorption caused by the spray itself. This power was compared to the one released by the spray combustion process, and the results were in agreement with other studies available in the literature.
Technical Paper

Influence of Boost Pressure and Injection Pressure on Combustion Process and Exhaust Emissions in a HD Diesel Engine

2004-06-08
2004-01-1842
The scope of this study is the analysis of the influence of boost pressure and injection pressure on combustion process and pollutant emissions. The influence of these parameters is investigated for different engine speeds. Fuel mass was kept constant for all the tests in order to avoid its influence on the analysis. A single cylinder research diesel engine, equipped with a common rail injection system capable of operating up to a maximum pressure of 150 MPa was used. Special attention was paid to NOx, smoke (which are the most important pollutants for legislation) and brake specific fuel consumption.
Journal Article

Comparison of the Diffusive Flame Structure for Dodecane and OMEX Fuels for Conditions of Spray A of the ECN

2020-09-15
2020-01-2120
A comparison of the flame structure for two different fuels, dodecane and oxymethylene dimethyl ether (OMEX), has been performed under condition of Spray A of the Engine Combustion Network (ECN). The experiments were carried out in a constant pressure vessel with wide optical access, at high pressure and temperature and controlled oxygen concentration. The flame structure analysis has been performed by measuring the formaldehyde and OH radical distributions using planar Laser-Induced Fluorescence (PLIF) techniques. To complement the analysis, this information was combined with that obtained with high-speed imaging of OH* chemiluminescence radiation in the UV. Formaldehyde molecules are excited with the 355-nm radiation from the third harmonic of a Nd:YAG laser, whilst OH is excited with a wavelength of 281.00-nm from a dye laser.
X