Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Combustion Behaviour of Blends of Synthetic Fuels in an Optical Single Cylinder Engine

2021-09-05
2021-24-0038
The reduction of carbon footprint of compression ignition engines for road transport makes it necessary to search for clean fuels alternative to diesel and to evaluate them under engine conditions. For this reason, in this paper, the combustion behaviour of different blends of synthetic fuels has been analyzed in an optical single cylinder engine of Medium Duty size (0,8 liters per cylinder) by means of optical techniques. The aim is to evaluate the effect of synthetic fuels, both partly or completely fossil diesel, in terms of combustion behaviours and soot formation. Therefore, different blends of oxymethylene dimethyl ether (OMEX) with diesel and neat hydrotreated vegetable oil (HVO) were studied. A conventional common rail injection system and a single injection strategy was used. In addition, special care was taken to ensure that conditions inside the engine cylinder at the injection start were as close as possible to the conditions used in previous studies.
Journal Article

A Numerical Approach for the Analysis of Hydrotreated Vegetable Oil and Dimethoxy Methane Blends as Low-Carbon Alternative Fuel in Compression Ignition Engines

2023-04-11
2023-01-0338
Despite recent advances towards powertrain electrification as a solution to mitigate pollutant emissions from road transport, synthetic fuels (especially e- fuels) still have a major role to play in applications where electrification will not be viable in short-medium term. Among e-fuels, oxymethylene ethers are getting serious interest within the scientific community and industry. Dimethoxy methane (OME1) is the smaller molecule among this group, which is of special interest due to its low soot formation. However, its application is still limited mainly due to its low lower heating value. In contrast, other fuel alternatives like hydrogenated vegetable oil (HVO) are considered as drop-in solutions thanks to their very similar properties and molecular composition to that of fossil diesel. However, their pollutant emission improvement is limited.
X