Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Dynamic Properties of Styrene-Butadiene Rubber for Automotive Applications

2009-05-19
2009-01-2128
Styrene-Butadiene Rubber (SBR) is a copolymer of butadiene and styrene. It has a wide range of applications in the automotive industry due to its high durability, resistance to abrasion, oils and oxidation. SBR applications vary from tires to vibration isolators and gaskets. SBR is also used in tuned dampers which aim to reduce and control the angular vibrations of crankshafts, acting as an isolator and energy absorber between the tune damper's hub and the inertia ring. The dynamic properties of this polymer are therefore, very important in developing an appropriate analytical model. This paper presents the results of a series of experiments performed to determine the dynamic stiffness and damping properties of SBR. The frequency, temperature and displacement dependent properties are determined in a low frequency range from 0.4 to 150 Hz, and in a mid frequency range from 150 to 550 Hz. The most interesting property of SBR is its frequency dependent behavior.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
X