Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Designing a Hybrid Electric Powertrain for an Unmanned Aircraft with a Commercial Optimization Software

2017-06-29
2017-01-9000
The design of a hybrid electric powertrain requires a complex optimization procedure because its performance will strongly depend on both the size of the components and the energy management strategy. The problem is particular critical in the aircraft field because of the strong constraints to be fulfilled (in particular in terms of weight and volume). The problem was addressed in the present investigation by linking an in-house simulation code for hybrid electric aircraft with a commercial many-objective optimization software. The design variables include the size of engine and electric motor, the specification of the battery (typology, nominal capacity, bus voltage), the cooling method of the motor and the battery management strategy. Several key performance indexes were suggested by the industrial partner. The four most important indexes were used as fitness functions: electric endurance, fuel consumption, take-off distance and powertrain volume.
Technical Paper

Dynamic Modeling of a PEM Fuel Cell for a Low Consumption Prototype

2013-04-08
2013-01-0480
This investigation describes the dynamic modeling of a PEM (Polymer Electrolyte Membrane) fuel cell applied to a commercial 1kW dead end anode configuration. The system is tested and validated through some initial experiments. The model allows the characterization of the polarization curve, the evaluation of cell performance in terms of efficiency and consumption and the estimation of water production. To this purpose, an experimental set-up has been created using an electronic DC load (connected to a computer by RS232 serial communication) and an NI DAQ CompactRio evaluation board. The target is studying and testing solutions to improve performance, in particular with reference to hydrogen recovery solution from the purge valve. The fuel cell model has been interfaced with a 3D race simulator that is able to reproduce the environment of the competition and the specification of the vehicle.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
X